Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
NPJ Microgravity ; 10(1): 72, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914554

RESUMEN

Individuals in isolated and extreme environments can experience debilitating side-effects including significant decreases in fat-free mass (FFM) from disuse and inadequate nutrition. The objective of this study was to determine the strengths and weaknesses of three-dimensional optical (3DO) imaging for monitoring body composition in either simulated or actual remote environments. Thirty healthy adults (ASTRO, male = 15) and twenty-two Antarctic Expeditioners (ABCS, male = 18) were assessed for body composition. ASTRO participants completed duplicate 3DO scans while standing and inverted by gravity boots plus a single dual-energy X-ray absorptiometry (DXA) scan. The inverted scans were an analog for fluid redistribution from gravity changes. An existing body composition model was used to estimate fat mass (FM) and FFM from 3DO meshes. 3DO body composition estimates were compared to DXA with linear regression and reported with the coefficient of determination (R2) and root mean square error (RMSE). ABCS participants received only duplicate 3DO scans on a monthly basis. Standing ASTRO meshes achieved an R2 of 0.76 and 0.97 with an RMSE of 2.62 and 2.04 kg for FM and FFM, while inverted meshes achieved an R2 of 0.52 and 0.93 with an RMSE of 2.84 and 3.23 kg for FM and FFM, respectively, compared to DXA. For the ABCS arm, mean weight, FM, and FFM changes were -0.47, 0.06, and -0.54 kg, respectively. Simulated fluid redistribution decreased the accuracy of estimated body composition values from 3DO scans. However, FFM stayed robust. 3DO imaging showed good absolute accuracy for body composition assessment in isolated and remote environments.

2.
Commun Med (Lond) ; 4(1): 13, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38287144

RESUMEN

BACKGROUND: Body shape, an intuitive health indicator, is deterministically driven by body composition. We developed and validated a deep learning model that generates accurate dual-energy X-ray absorptiometry (DXA) scans from three-dimensional optical body scans (3DO), enabling compositional analysis of the whole body and specified subregions. Previous works on generative medical imaging models lack quantitative validation and only report quality metrics. METHODS: Our model was self-supervised pretrained on two large clinical DXA datasets and fine-tuned using the Shape Up! Adults study dataset. Model-predicted scans from a holdout test set were evaluated using clinical commercial DXA software for compositional accuracy. RESULTS: Predicted DXA scans achieve R2 of 0.73, 0.89, and 0.99 and RMSEs of 5.32, 6.56, and 4.15 kg for total fat mass (FM), fat-free mass (FFM), and total mass, respectively. Custom subregion analysis results in R2s of 0.70-0.89 for left and right thigh composition. We demonstrate the ability of models to produce quantitatively accurate visualizations of soft tissue and bone, confirming a strong relationship between body shape and composition. CONCLUSIONS: This work highlights the potential of generative models in medical imaging and reinforces the importance of quantitative validation for assessing their clinical utility.


Body composition, measured quantities of muscle, fat, and bone, is typically assessed through dual energy X-ray absorptiometry (DXA) scans, which requires specialized equipment, trained technicians and involves exposure to radiation. Exterior body shape is dependent on body composition and recent technological advances have made three-dimensional (3D) scanning for body shape accessible and virtually ubiquitous. We developed a model which uses 3D body surface scan inputs to generate DXA scans. When analyzed with commercial software that is used clinically, our model generated images yielded accurate quantities of fat, lean, and bone. Our work highlights the strong relationship between exterior body shape and interior composition. Moreover, it suggests that with enhanced accuracy, such medical imaging models could be more widely adopted in clinical care, making the analysis of body composition more accessible and easier to obtain.

3.
Nutr Metab Cardiovasc Dis ; 34(3): 799-806, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38218711

RESUMEN

BACKGROUND AND AIMS: Body fat distribution, i.e., visceral (VAT), subcutaneous adipose tissue (SAT) and intramuscular fat, is important for disease prevention, but sex and ethnic differences are not well understood. Our aim was to identify anthropometric, demographic, and lifestyle predictors for these outcomes. METHODS AND RESULTS: The cross-sectional ShapeUp!Kids study was conducted among five ethnic groups aged 5-18 years. All participants completed questionnaires, anthropometric measurements, and abdominal MRI scans. VAT and SAT areas at four lumbar levels and muscle density were assessed manually. General linear models were applied to estimate coefficients of determination (R2) and to compare the fit of VAT and SAT prediction models. After exclusions, the study population had 133 male and 170 female participants. Girls had higher BMI-z scores, waist circumference (WC), and SAT than boys but lower VAT/SAT and muscle density. SAT, VAT, and VAT/SAT but not muscle density differed significantly by ethnicity. R2 values were higher for SAT than VAT across groups and improved slightly after adding WC. For SAT, R2 increased from 0.85 to 0.88 (girls) and 0.62 to 0.71 (boys) when WC was added while VAT models improved from 0.62 to 0.65 (girls) and 0.57 to 0.62 (boys). VAT values were significantly lower among Blacks than Whites with little difference for the other groups. CONCLUSION: This analysis in a multiethnic population identified BMI-z scores and WC as the major predictors of MRI-derived SAT and VAT and highlights the important ethnic differences that need to be considered in diverse populations.


Asunto(s)
Músculos , Grasa Subcutánea , Humanos , Masculino , Femenino , Estudios Transversales , Grasa Subcutánea/diagnóstico por imagen , Antropometría/métodos , Circunferencia de la Cintura
4.
Clin Nutr ; 43(1): 284-294, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38104490

RESUMEN

BACKGROUND: Athletes vary in hydration status due to ongoing training regimes, diet demands, and extreme exertion. With water being one of the largest body composition compartments, its variation can cause misinterpretation of body composition assessments meant to monitor strength and training progress. In this study, we asked what accessible body composition approach could best quantify body composition in athletes with a variety of hydration levels. METHODS: The Da Kine Study recruited collegiate and intramural athletes to undergo a variety of body composition assessments including air-displacement plethysmography (ADP), deuterium-oxide dilution (D2O), dual-energy X-ray absorptiometry (DXA), underwater-weighing (UWW), 3D-optical (3DO) imaging, and bioelectrical impedance (BIA). Each of these methods generated 2- or 3-compartment body composition estimates of fat mass (FM) and fat-free mass (FFM) and was compared to equivalent measures of the criterion 6-compartment model (6CM) that accounts for variance in hydration. Body composition by each method was used to predict abdominal and thigh strength, assessed by isokinetic/isometric dynamometry. RESULTS: In total, 70 (35 female) athletes with a mean age of 21.8 ± 4.2 years were recruited. Percent hydration (Body Water6CM/FFM6CM) had substantial variation in both males (63-73 %) and females (58-78 %). ADP and DXA FM and FF M had moderate to substantial agreement with the 6C model (Lin's Concordance Coefficient [CCC] = 0.90-0.95) whereas the other measures had lesser agreement (CCC <0.90) with one exception of 3DO FFM in females (CCC = 0.91). All measures of FFM produced excellent precision with %CV < 1.0 %. However, FM measures in general had worse precision (% CV < 2.0 %). Increasing quartiles (significant p < 0.001 trend) of 6CM FFM resulted in increasing strength measures in males and females. Moreover, the stronger the agreement between the alternative methods to the 6CM, the more robust their correlation with strength, irrespective of hydration status. CONCLUSION: The criterion 6CM showed the best association to strength regardless of the hydration status of the athletes for both males and females. Simpler methods showed high precision for both FM and FFM and those with the strongest agreement to the 6CM had the highest strength associations. SUMMARY BOX: This study compared various body composition analysis methods in 70 athletes with varying states of hydration to the criterion 6-compartment model and assessed their relationship to muscle strength. The results showed that accurate and precise estimates of body composition can be determined in athletes, and a more accurate body composition measurement produces better strength estimates. The best laboratory-based techniques were air displacement plethysmography and dual-energy x-ray absorptiometry, while the commercial methods had moderate-poor agreement. Prioritizing accurate body composition assessment ensures better strength estimates in athletes.


Asunto(s)
Composición Corporal , Agua Corporal , Masculino , Humanos , Femenino , Adolescente , Adulto Joven , Adulto , Composición Corporal/fisiología , Atletas , Absorciometría de Fotón/métodos , Impedancia Eléctrica , Fuerza Muscular , Reproducibilidad de los Resultados
5.
Am J Clin Nutr ; 118(4): 812-821, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37598747

RESUMEN

BACKGROUND: New recommendations for the assessment of malnutrition and sarcopenia include body composition, specifically reduced muscle mass. Three-dimensional optical imaging (3DO) is a validated, accessible, and affordable alternative to dual X-ray absorptiometry (DXA). OBJECTIVE: Identify strengths and weaknesses of 3DO for identification of malnutrition in participants with low body mass index (BMI) and eating disorders. DESIGN: Participants were enrolled in the cross-sectional Shape Up! Adults and Kids studies of body shape, metabolic risk, and functional assessment and had BMI of <20 kg/m2 in adults or <85% of median BMI (mBMI) in children and adolescents. A subset was referred for eating disorders evaluation. Anthropometrics, scans, strength testing, and questionnaires were completed in clinical research centers. Lin's Concordance Correlation Coefficient (CCC) assessed agreement between 3DO and DXA; multivariate linear regression analysis examined associations between weight history and body composition. RESULTS: Among 95 participants, mean ± SD BMI was 18.3 ± 1.4 kg/m2 in adult women (N = 56), 19.0 ± 0.6 in men (N = 14), and 84.2% ± 4.1% mBMI in children (N = 25). Concordance was excellent for fat-free mass (FFM, CCC = 0.97) and strong for appendicular lean mass (ALM, CCC = 0.86) and fat mass (FM, CCC = 0.87). By DXA, 80% of adults met the low FFM index criterion for malnutrition, and 44% met low ALM for sarcopenia; 52% of children and adolescents were <-2 z-score for FM. 3DO identified 95% of these cases. In the subset, greater weight loss predicted lower FFM, FM, and ALM by both methods; a greater percentage of weight regained predicted a higher percentage of body fat. CONCLUSIONS: 3DO can accurately estimate body composition in participants with low BMI and identify criteria for malnutrition and sarcopenia. In a subset, 3DO detected changes in body composition expected with weight loss and regain secondary to eating disorders. These findings support the utility of 3DO for body composition assessment in patients with low BMI, including those with eating disorders. This trial was registered at clinicaltrials.gov as NCT03637855.


Asunto(s)
Trastornos de Alimentación y de la Ingestión de Alimentos , Desnutrición , Sarcopenia , Adulto , Masculino , Niño , Adolescente , Humanos , Femenino , Índice de Masa Corporal , Composición Corporal/fisiología , Desnutrición/diagnóstico , Absorciometría de Fotón/métodos , Pérdida de Peso
6.
Kidney Med ; 5(9): 100690, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37547561

RESUMEN

Management of atrial fibrillation (AF) is a clinical conundrum in people with kidney failure. Stroke risk is disproportionately high, but clinicians have a limited armamentarium to improve outcomes in this population in whom there is a concurrently high bleeding risk. Direct oral anticoagulants may have a superior benefit-risk profile compared with vitamin K antagonists in people on hemodialysis. Although research has predominantly focused on identifying a safe and effective oral anticoagulation option to reduce stroke risk in people with kidney failure (and predominantly those on hemodialysis), it remains uncertain how clinicians discriminate between people who would derive net clinical benefit as opposed to net harm. The recommended CHA2DS2-VASc score cutoffs provide poor discriminatory value, and there is an urgent need to identify robust markers of thromboembolic risk in kidney failure. There is increasing data to challenge the prior dogma of risk equivalence across AF type, and the American Heart Association highlights moving beyond AF as a binary entity to consider the prognostic significance of AF burden. Implantable cardiac monitor studies reveal high rates and varied burden of subclinical and paroxysmal AF in people on hemodialysis. The association between AF burden and the proarrhythmic environment of hemodialysis with cyclical volume loading, offloading, and electrolyte changes is not well studied. We review the significance of AF burden as a contributor to thromboembolic risk, its potential as the missing link in risk assessment, and updated evidence for anticoagulation in people with kidney failure.

7.
Clin Nutr ; 42(9): 1619-1630, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37481870

RESUMEN

BACKGROUND: Excess adiposity in children is strongly correlated with obesity-related metabolic disease in adulthood, including diabetes, cardiovascular disease, and 13 types of cancer. Despite the many long-term health risks of childhood obesity, body mass index (BMI) Z-score is typically the only adiposity marker used in pediatric studies and clinical applications. The effects of regional adiposity are not captured in a single scalar measurement, and their effects on short- and long-term metabolic health are largely unknown. However, clinicians and researchers rarely deploy gold-standard methods for measuring compartmental fat such as magnetic resonance imaging (MRI) and dual X-ray absorptiometry (DXA) on children and adolescents due to cost or radiation concerns. Three-dimensional optical (3DO) scans are relatively inexpensive to obtain and use non-invasive and radiation-free imaging techniques to capture the external surface geometry of a patient's body. This 3D shape contains cues about the body composition that can be learned from a structured correlation between 3D body shape parameters and reference DXA scans obtained on a sample population. STUDY AIM: This study seeks to introduce a radiation-free, automated 3D optical imaging solution for monitoring body shape and composition in children aged 5-17. METHODS: We introduce an automated, linear learning method to predict total and regional body composition of children aged 5-17 from 3DO scans. We collected 145 male and 206 female 3DO scans on children between the ages of 5 and 17 with three scanners from independent manufacturers. We used an automated shape templating method first introduced on an adult population to fit a topologically consistent 60,000 vertex (60 k) mesh to 3DO scans of arbitrary scanning source and mesh topology. We constructed a parameterized body shape space using principal component analysis (PCA) and estimated a regression matrix between the shape parameters and their associated DXA measurements. We automatically fit scans of 30 male and 38 female participants from a held-out test set and predicted 12 body composition measurements. RESULTS: The coefficient of determination (R2) between 3DO predicted body composition and DXA measurements was at least 0.85 for all measurements with the exception of visceral fat on 3D scan predictions. Precision error was 1-4 times larger than that of DXA. No predicted variable was significantly different from DXA measurement except for male trunk lean mass. CONCLUSION: Optical imaging can quickly, safely, and inexpensively estimate regional body composition in children aged 5-17. Frequent repeat measurements can be taken to chart changes in body adiposity over time without risk of radiation overexposure.


Asunto(s)
Obesidad Infantil , Adulto , Adolescente , Humanos , Niño , Masculino , Femenino , Preescolar , Obesidad Infantil/diagnóstico por imagen , Composición Corporal , Índice de Masa Corporal , Absorciometría de Fotón/métodos , Adiposidad
8.
Am J Clin Nutr ; 118(3): 657-671, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37474106

RESUMEN

BACKGROUND: The obesity epidemic brought a need for accessible methods to monitor body composition, as excess adiposity has been associated with cardiovascular disease, metabolic disorders, and some cancers. Recent 3-dimensional optical (3DO) imaging advancements have provided opportunities for assessing body composition. However, the accuracy and precision of an overall 3DO body composition model in specific subgroups are unknown. OBJECTIVES: This study aimed to evaluate 3DO's accuracy and precision by subgroups of age, body mass index, and ethnicity. METHODS: A cross-sectional analysis was performed using data from the Shape Up! Adults study. Each participant received duplicate 3DO and dual-energy X-ray absorptiometry (DXA) scans. 3DO meshes were digitally registered and reposed using Meshcapade. Principal component analysis was performed on 3DO meshes. The resulting principal components estimated DXA whole-body and regional body composition using stepwise forward linear regression with 5-fold cross-validation. Duplicate 3DO and DXA scans were used for test-retest precision. Student's t tests were performed between 3DO and DXA by subgroup to determine significant differences. RESULTS: Six hundred thirty-four participants (females = 346) had completed the study at the time of the analysis. 3DO total fat mass in the entire sample achieved R2 of 0.94 with root mean squared error (RMSE) of 2.91 kg compared to DXA in females and similarly in males. 3DO total fat mass achieved a % coefficient of variation (RMSE) of 1.76% (0.44 kg), whereas DXA was 0.98% (0.24 kg) in females and similarly in males. There were no mean differences for total fat, fat-free, percent fat, or visceral adipose tissue by age group (P > 0.068). However, there were mean differences for underweight, Asian, and Black females as well as Native Hawaiian or other Pacific Islanders (P < 0.038). CONCLUSIONS: A single 3DO body composition model produced accurate and precise body composition estimates that can be used on diverse populations. However, adjustments to specific subgroups may be warranted to improve the accuracy in those that had significant differences. This trial was registered at clinicaltrials.gov as NCT03637855 (Shape Up! Adults).


Asunto(s)
Composición Corporal , Etnicidad , Adulto , Femenino , Humanos , Masculino , Absorciometría de Fotón/métodos , Índice de Masa Corporal , Estudios Transversales , Obesidad/diagnóstico por imagen , Imagen Óptica
10.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36901931

RESUMEN

Although many bacterial lipases and PHA depolymerases have been identified, cloned, and characterized, there is very little information on the potential application of lipases and PHA depolymerases, especially intracellular enzymes, for the degradation of polyester polymers/plastics. We identified genes encoding an intracellular lipase (LIP3), an extracellular lipase (LIP4), and an intracellular PHA depolymerase (PhaZ) in the genome of the bacterium Pseudomonas chlororaphis PA23. We cloned these genes into Escherichia coli and then expressed, purified, and characterized the biochemistry and substrate preferences of the enzymes they encode. Our data suggest that the LIP3, LIP4, and PhaZ enzymes differ significantly in their biochemical and biophysical properties, structural-folding characteristics, and the absence or presence of a lid domain. Despite their different properties, the enzymes exhibited broad substrate specificity and were able to hydrolyze both short- and medium-chain length polyhydroxyalkanoates (PHAs), para-nitrophenyl (pNP) alkanoates, and polylactic acid (PLA). Gel Permeation Chromatography (GPC) analyses of the polymers treated with LIP3, LIP4, and PhaZ revealed significant degradation of both the biodegradable as well as the synthetic polymers poly(ε-caprolactone) (PCL) and polyethylene succinate (PES).


Asunto(s)
Polihidroxialcanoatos , Pseudomonas chlororaphis , Pseudomonas/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Lipasa/metabolismo , Poliésteres/metabolismo , Polihidroxialcanoatos/metabolismo , Pseudomonas chlororaphis/genética , Especificidad por Sustrato
11.
Am J Clin Nutr ; 117(4): 794-801, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36822238

RESUMEN

BACKGROUND: Skeletal muscle is a large and clinically relevant body component that has been difficult and impractical to quantify outside of specialized facilities. Advances in smartphone technology now provide the opportunity to quantify multiple body surface dimensions such as circumferences, lengths, surface areas, and volumes. OBJECTIVES: This study aimed to test the hypothesis that anthropometric body measurements acquired with a smartphone application can be used to accurately estimate an adult's level of muscularity. METHODS: Appendicular lean mass (ALM) measured by DXA served as the reference for muscularity in a sample of 322 adults. Participants also had digital anthropometric dimensions (circumferences, lengths, and regional and total body surface areas and volumes) quantified with a 20-camera 3D imaging system. Least absolute shrinkage and selection operator (LASSO) regression procedures were used to develop the ALM prediction equations in a portion of the sample, and these models were tested in the remainder of the sample. Then, the accuracy of the prediction models was cross-validated in a second independent sample of 53 adults who underwent ALM estimation by DXA and the same digital anthropometric estimates acquired with a smartphone application. RESULTS: LASSO models included multiple significant demographic and 3D digital anthropometric predictor variables. Evaluation of the models in the testing sample indicated respective RMSEs in women and men of 1.56 kg and 1.53 kg and R2's of 0.74 and 0.90, respectively. Cross-validation of the LASSO models in the smartphone application group yielded RMSEs in women and men of 1.78 kg and 1.50 kg and R2's of 0.79 and 0.95; no significant differences or bias between measured and predicted ALM values were observed. CONCLUSIONS: Smartphone image capture capabilities combined with device software applications can now provide accurate renditions of the adult muscularity phenotype outside of specialized laboratory facilities. Am J Clin Nutr 2023;x:xx. This trial was registered at clinicaltrials.gov as NCT03637855 (https://clinicaltrials.gov/ct2/show/NCT03637855), NCT05217524 (https://clinicaltrials.gov/ct2/show/NCT05217524), and NCT03771417 (https://clinicaltrials.gov/ct2/show/NCT03771417).


Asunto(s)
Composición Corporal , Teléfono Inteligente , Femenino , Humanos , Absorciometría de Fotón/métodos , Antropometría/métodos , Músculo Esquelético
12.
Am J Clin Nutr ; 117(4): 802-813, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36796647

RESUMEN

BACKGROUND: Recent 3-dimensional optical (3DO) imaging advancements have provided more accessible, affordable, and self-operating opportunities for assessing body composition. 3DO is accurate and precise in clinical measures made by DXA. However, the sensitivity for monitoring body composition change over time with 3DO body shape imaging is unknown. OBJECTIVES: This study aimed to evaluate the ability of 3DO in monitoring body composition changes across multiple intervention studies. METHODS: A retrospective analysis was performed using intervention studies on healthy adults that were complimentary to the cross-sectional study, Shape Up! Adults. Each participant received a DXA (Hologic Discovery/A system) and 3DO (Fit3D ProScanner) scan at the baseline and follow-up. 3DO meshes were digitally registered and reposed using Meshcapade to standardize the vertices and pose. Using an established statistical shape model, each 3DO mesh was transformed into principal components, which were used to predict whole-body and regional body composition values using published equations. Body composition changes (follow-up minus the baseline) were compared with those of DXA using a linear regression analysis. RESULTS: The analysis included 133 participants (45 females) in 6 studies. The mean (SD) length of follow-up was 13 (5) wk (range: 3-23 wk). Agreement between 3DO and DXA (R2) for changes in total FM, total FFM, and appendicular lean mass were 0.86, 0.73, and 0.70, with root mean squared errors (RMSEs) of 1.98 kg, 1.58 kg, and 0.37 kg, in females and 0.75, 0.75, and 0.52 with RMSEs of 2.31 kg, 1.77 kg, and 0.52 kg, in males, respectively. Further adjustment with demographic descriptors improved the 3DO change agreement to changes observed with DXA. CONCLUSIONS: Compared with DXA, 3DO was highly sensitive in detecting body shape changes over time. The 3DO method was sensitive enough to detect even small changes in body composition during intervention studies. The safety and accessibility of 3DO allows users to self-monitor on a frequent basis throughout interventions. This trial was registered at clinicaltrials.gov as NCT03637855 (Shape Up! Adults; https://clinicaltrials.gov/ct2/show/NCT03637855); NCT03394664 (Macronutrients and Body Fat Accumulation: A Mechanistic Feeding Study; https://clinicaltrials.gov/ct2/show/NCT03394664); NCT03771417 (Resistance Exercise and Low-Intensity Physical Activity Breaks in Sedentary Time to Improve Muscle and Cardiometabolic Health; https://clinicaltrials.gov/ct2/show/NCT03771417); NCT03393195 (Time Restricted Eating on Weight Loss; https://clinicaltrials.gov/ct2/show/NCT03393195), and NCT04120363 (Trial of Testosterone Undecanoate for Optimizing Performance During Military Operations; https://clinicaltrials.gov/ct2/show/NCT04120363).


Asunto(s)
Composición Corporal , Imagen Óptica , Masculino , Adulto , Femenino , Humanos , Absorciometría de Fotón/métodos , Estudios Transversales , Estudios Retrospectivos , Composición Corporal/fisiología , Impedancia Eléctrica , Índice de Masa Corporal
13.
Obesity (Silver Spring) ; 30(8): 1589-1598, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35894079

RESUMEN

OBJECTIVE: This study examined whether body shape and composition obtained by three-dimensional optical (3DO) scanning improved the prediction of metabolic syndrome (MetS) prevalence compared with BMI and demographics. METHODS: A diverse ambulatory adult population underwent whole-body 3DO scanning, blood tests, manual anthropometrics, and blood pressure assessment in the Shape Up! Adults study. MetS prevalence was evaluated based on 2005 National Cholesterol Education Program criteria, and prediction of MetS involved logistic regression to assess (1) BMI, (2) demographics-adjusted BMI, (3) 85 3DO anthropometry and body composition measures, and (4) BMI + 3DO + demographics models. Receiver operating characteristic area under the curve (AUC) values were generated for each predictive model. RESULTS: A total of 501 participants (280 female) were recruited, with 87 meeting the criteria for MetS. Compared with the BMI model (AUC = 0.819), inclusion of age, sex, and race increased the AUC to 0.861, and inclusion of 3DO measures further increased the AUC to 0.917. The overall integrated discrimination improvement between the 3DO + demographics and the BMI model was 0.290 (p < 0.0001) with a net reclassification improvement of 0.214 (p < 0.0001). CONCLUSIONS: Body shape measures from an accessible 3DO scan, adjusted for demographics, predicted MetS better than demographics and/or BMI alone. Risk classification in this population increased by 29% when using 3DO scanning.


Asunto(s)
Síndrome Metabólico , Somatotipos , Adulto , Antropometría/métodos , Composición Corporal/fisiología , Índice de Masa Corporal , Femenino , Humanos , Síndrome Metabólico/diagnóstico por imagen , Síndrome Metabólico/epidemiología , Curva ROC , Factores de Riesgo , Circunferencia de la Cintura
14.
Am J Clin Nutr ; 116(5): 1418-1429, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35883219

RESUMEN

BACKGROUND: Novel advancements in wearable technologies include continuous measurement of body composition via smart watches. The accuracy and stability of these devices are unknown. OBJECTIVES: This study evaluated smart watches with integrated bioelectrical impedance analysis (BIA) sensors for their ability to measure and monitor changes in body composition. METHODS: Participants recruited across BMIs received duplicate body composition measures using 2 wearable bioelectrical impedance analysis (W-BIA) model smart watches in sitting and standing positions, and multiple versions of each watch were used to evaluate inter- and intramodel precision. Duplicate laboratory-grade octapolar bioelectrical impedance analysis (8-BIA) and criterion DXA scans were acquired to compare estimates between the watches and laboratory methods. Test-retest precision and least significant changes assessed the ability to monitor changes in body composition. RESULTS: Of 109 participants recruited, 75 subjects completed the full manufacturer-recommended protocol. No significant differences were observed between W-BIA watches in position or between watch models. Significant fat-free mass (FFM) differences (P < 0.05) were observed between both W-BIA and 8-BIA when compared to DXA, though the systematic biases to the criterion were correctable. No significant difference was observed between the W-BIA and the laboratory-grade BIA technology for FFM (55.3 ± 14.5 kg for W-BIA versus 56.0 ± 13.8 kg for 8-BIA; P > 0.05; Lin's concordance correlation coefficient = 0.97). FFM was less precise on the watches than DXA {CV, 0.7% [root mean square error (RMSE) = 0.4 kg] versus 1.3% (RMSE = 0.7 kg) for W-BIA}, requiring more repeat measures to equal the same confidence in body composition changes over time as DXA. CONCLUSIONS: After systematic correction, smart-watch BIA devices are capable of stable, reliable, and accurate body composition measurements, with precision comparable to but lower than that of laboratory measures. These devices allow for measurement in environments not accessible to laboratory systems, such as homes, training centers, and geographically remote locations.


Asunto(s)
Composición Corporal , Humanos , Impedancia Eléctrica , Reproducibilidad de los Resultados , Índice de Masa Corporal , Absorciometría de Fotón
15.
Med Phys ; 49(10): 6395-6409, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35837761

RESUMEN

BACKGROUND: Many predictors of morbidity caused by metabolic disease are associated with body shape. 3D optical (3DO) scanning captures body shape and has been shown to accurately and precisely predict body composition variables associated with mortality risk. 3DO is safer, less expensive, and more accessible than criterion body composition assessment methods such as dual-energy X-ray absorptiometry (DXA). However, 3DO scanning has not been standardized across manufacturers for pose, mesh resolution, and post processing methods. PURPOSE: We introduce a scanner-agnostic algorithm that automatically fits a topologically consistent human mesh to 3DO scanned point clouds and predicts clinically important body metrics using a standardized body shape model. Our models transform raw scans captured by any 3DO scanner into fixed topology meshes with anatomical consistency, standardizing the outputs of 3DO scans across manufacturers and allowing for the use of common prediction models across scanning devices. METHODS: A fixed-topology body mesh template was automatically registered to 848 training scans from three different 3DO systems. Participants were between 18 and 89 years old with body mass index ranging from 14 to 52 kg/m2 . Scans were registered by first performing a coarse nearest neighbor alignment between the template and the input scan with an anatomically constrained principal component analysis (PCA) domain deformation using a device and gender specific bootstrap basis trained on 70 seed scans each. The template mesh was then optimized to fit the target with a smooth per-vertex surface-to-surface deformation. A combined unified PCA model was created from the superset of all automatically fit training scans including all three devices. Body composition predictions to DXA measurements were learned from the training mesh PCA coefficients using linear regression. Using this final unified model, we tested the accuracy of our body composition models on a withheld sample of 562 scans by fitting a PCA parameterized template mesh to each raw scan and predicting the expected body composition metrics from the principal components using the learned regression model. RESULTS: We achieved coefficients of determination (R2 ) above 0.8 on all nine fat and lean predictions except female visceral fat (0.77). R2 was as high as 0.94 (total fat and lean, trunk fat), and all root-mean-squared errors were below 3.0 kg. All predicted body composition variables were not significantly different from reference DXA measurements except for visceral fat and female trunk fat. Repeatability precision as measured by the coefficient of variation (%CV) was around 2-3x worse than DXA precision, with visceral fat %CV below 2x DXA %CV and female total fat mass at 5x. CONCLUSIONS: Our method provides an accurate, automated, and scanner agnostic framework for standardizing 3DO scans and a low cost, radiation-free alternative to criterion radiology imaging for body composition analysis. We published a web-app version of this work at https://shapeup.shepherdresearchlab.org/3do-bodycomp-analyzer/ that accepts mesh file uploads and returns templated meshes with body composition predictions for demo purposes.


Asunto(s)
Tejido Adiposo , Composición Corporal , Absorciometría de Fotón , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Modelos Lineales , Persona de Mediana Edad , Análisis de Componente Principal , Cintigrafía , Adulto Joven
16.
Int J Obes (Lond) ; 46(9): 1587-1590, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35610336

RESUMEN

BACKGROUND/OBJECTIVES: Body size and shape have increased over the past several decades with one in five adolescents now having obesity according to objective anthropometric measures such as weight, height, and body mass index (BMI). The gradual physical changes and their consequences may not be fully appreciated upon visual inspection by those managing the long-term health of adolescents. This study aimed to develop humanoid avatars representing the gradual changes in adolescent body size and shape over the past five decades and to align avatars with key BMI percentile cut points for underweight, normal weight, overweight, and obesity. PARTICIPANTS/METHODS: Participants included 223 children and adolescents between the ages of 5 and 18 years approximately representative of the race/ethnicity and BMI of the noninstitutionalized US population. Each participant completed a three-dimensional whole-body scan, and the collected data was used to develop manifold regression models for generating humanoid male and female avatars from specified ages, weights, and heights. Secular changes in the mean weights and heights of adolescents were acquired from six U.S. National Health and Nutrition Surveys beginning in 1971-1974 and ending in 2015-2018. Male and female avatars at two representative ages, 10 and 15 years, were developed for each survey and at the key BMI percentile cut points based on data from the 2015-2018 survey. RESULTS: The subtle changes in adolescent Americans' body size and shape over the past five decades are represented by 24 male and female 10- and 15-year-old avatars and 8 corresponding BMI percentile cut points. CONCLUSIONS: The current study, the first of its kind, aligns objective physical examination weights and heights with the visual appearance of adolescents. Aligning the biometric and visual information may help improve awareness and appropriate clinical management of adolescents with excess adiposity passing through health care systems. TRIAL REGISTRATION: ClinicalTrials.Gov NCT03706612.


Asunto(s)
Obesidad Infantil , Adolescente , Índice de Masa Corporal , Niño , Preescolar , Femenino , Humanos , Masculino , Encuestas Nutricionales , Sobrepeso/epidemiología , Obesidad Infantil/epidemiología , Prevalencia , Delgadez , Estados Unidos/epidemiología
17.
Obesity (Silver Spring) ; 30(6): 1181-1188, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35491718

RESUMEN

OBJECTIVE: Three-dimensional (3D) imaging systems are increasingly being used in health care settings for quantifying body size and shape. The potential exists to provide similar phenotyping capabilities outside of professional settings using smartphone applications (apps). The current study aim was to compare waist, hip, upper arm, and midthigh circumference measurements acquired by a free downloadable app (MeThreeSixty; Size Stream, Cary, North Carolina) and a conventional 20-camera 3D system (SS20; Size Stream) with those measured with a flexible tape at the same anatomic sites. METHODS: Fifty-nine adults were scanned with the app and SS20; the same software was used to generate circumference estimates from device-acquired object files that were then compared with reference tape measurements. RESULTS: The app and SS20 had similar coefficients of variation that were minimally larger than those by the tape (e.g., waist, 0.93%, 0.87%, and 0.06%). Correlations of the app and of SS20 with tape circumferences were all strong (p < 0.001) and similar in magnitude (R2 s: 0.72-0.93 and 0.78-0.95, respectively); minimally significant (p < 0.05 to p < 0.01) bias was present between both imaging approaches and some tape measurements. CONCLUSION: These proof-of-concept observations combined with ubiquitous smartphone availability create the possibility of phenotyping adult body size and shape, with important clinical and research implications, on a global scale.


Asunto(s)
Aplicaciones Móviles , Antropometría/métodos , Tamaño Corporal , Teléfono Inteligente
18.
Nutrients ; 14(7)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35406138

RESUMEN

The historical 1975 Reference Man is a 'model' that had been used as a basis for the calculation of radiation doses, metabolism, pharmacokinetics, sizes for organ transplantation and ergonomic optimizations in the industry, e.g., to plan dimensions of seats and other formats. The 1975 Reference Man was not an average individual of a population; it was based on the multiple characteristics of body compositions that at that time were available, i.e., mainly from autopsy data. Faced with recent technological advances, new mathematical models and socio-demographic changes within populations characterized by an increase in elderly and overweight subjects a timely 'state-of-the-art' 2021 Reference Body are needed. To perform this, in vivo human body composition data bases in Kiel, Baton Rouge, San Francisco and Honolulu were analyzed and detailed 2021 Reference Bodies, and they were built for both sexes and two age groups (≤40 yrs and >40 yrs) at BMIs of 20, 25, 30 and 40 kg/m2. We have taken an integrative approach to address 'structure−structure' and 'structure−function' relationships at the whole-body level using in depth body composition analyses as assessed by gold standard methods, i.e., whole body Magnetic Resonance Imaging (MRI) and the 4-compartment (4C-) model (based on deuterium dilution, dual-energy X-ray absorptiometry and body densitometry). In addition, data obtained by a three-dimensional optical scanner were used to assess body shape. The future applications of the 2021 Reference Body relate to mathematical modeling to address complex metabolic processes and pharmacokinetics using a multi-level/multi-scale approach defining health within the contexts of neurohumoral and metabolic control.


Asunto(s)
Tejido Adiposo , Imagen por Resonancia Magnética , Absorciometría de Fotón/métodos , Adulto , Anciano , Composición Corporal , Agua Corporal , Femenino , Humanos , Masculino , Imagen de Cuerpo Entero
19.
Obesity (Silver Spring) ; 30(4): 920-930, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35253409

RESUMEN

OBJECTIVE: Given the importance of body fat distribution in chronic disease development, feasible methods to assess body fat are essential. This study compared dual-energy x-ray absorptiometry (DXA) in measuring visceral and subcutaneous adipose tissue (VAT and SAT) with magnetic resonance imaging (MRI). METHODS: VAT and SAT were assessed using similar DXA and MRI protocols among 1,795 elderly participants of the Adiposity Phenotype Study (APS) and 309 children/adolescents in Shape Up! Kids (SKids). Spearman correlations, Bland-Altman plots, and coefficients of determination (R2 ) assessed agreement between DXA and MRI measures. RESULTS: DXA overestimated SAT values in APS (315 vs. 229 cm2 ) and SKids (212 vs. 161 cm2 ), whereas DXA underestimated VAT measures (141 vs. 167 cm2 ) in adults only. The correlations between DXA and MRI values were stronger for SAT than VAT (APS: r = 0.92 vs. 0.88; SKids: 0.90 vs. 0.74). Bland-Altman plots confirmed better agreement for SAT than VAT despite differences by sex, ethnicity, and weight status with respective R2 values for SAT and VAT of 0.88 and 0.84 (APS) and 0.81 and 0.69 (SKids). CONCLUSION: These findings indicate that SAT by DXA reflects MRI measures in children and older adults, whereas agreement for VAT is weaker for individuals with low VAT levels.


Asunto(s)
Grasa Intraabdominal , Imagen por Resonancia Magnética , Absorciometría de Fotón/métodos , Adiposidad , Adolescente , Anciano , Humanos , Grasa Intraabdominal/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Obesidad , Grasa Subcutánea/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...