Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39229096

RESUMEN

Somatic mutations arising in hematopoietic stem cells (HSCs) may provide the latter with a fitness advantage, allowing the mutant HSC to clonally expand. Such mutations have been recurrently identified in the chromatin modifier, SRCAP, in both non-malignant and leukemic clones, suggesting that this gene plays a significant role in hematopoiesis. We generated a conditional Srcap loss of function murine model and determined the consequences of hematopoietic-specific loss of this gene. We show that Srcap is essential for normal fetal liver erythropoiesis and monocytopoiesis. In Srcap deficient fetal livers, the number of phenotypic HSCs is similar to that of controls, but these HSCs exhibit a profound repopulating defect. Likewise, conditional deletion of Srcap during adult hematopoiesis results in a rapid loss of HSCs. Loss of Srcap is associated with evidence of increased DNA damage in HSCs and lineage-restricted progenitors as assessed by y-H2AX expression. Consistent with this finding, we observed strong transcriptional upregulation of the p53 pathway in Srcap deficient erythroid precursors. Collectively our data highlight the importance of Srcap in maintaining HSC function and supporting hematopoietic differentiation and suggests that it plays an essential role in maintaining genomic integrity.

2.
Cancer Discov ; 11(12): 3126-3141, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34193440

RESUMEN

Myeloproliferative neoplasms (MPN) are chronic blood diseases with significant morbidity and mortality. Although sequencing studies have elucidated the genetic mutations that drive these diseases, MPNs remain largely incurable with a significant proportion of patients progressing to rapidly fatal secondary acute myeloid leukemia (sAML). Therapeutic discovery has been hampered by the inability of genetically engineered mouse models to generate key human pathologies such as bone marrow fibrosis. To circumvent these limitations, here we present a humanized animal model of myelofibrosis (MF) patient-derived xenografts (PDX). These PDXs robustly engrafted patient cells that recapitulated the patient's genetic hierarchy and pathologies such as reticulin fibrosis and propagation of MPN-initiating stem cells. The model can select for engraftment of rare leukemic subclones to identify patients with MF at risk for sAML transformation and can be used as a platform for genetic target validation and therapeutic discovery. We present a novel but generalizable model to study human MPN biology. SIGNIFICANCE: Although the genetic events driving MPNs are well defined, therapeutic discovery has been hampered by the inability of murine models to replicate key patient pathologies. Here, we present a PDX system to model human myelofibrosis that reproduces human pathologies and is amenable to genetic and pharmacologic manipulation. This article is highlighted in the In This Issue feature, p. 2945.


Asunto(s)
Leucemia Mieloide Aguda , Trastornos Mieloproliferativos , Animales , Evolución Clonal/genética , Modelos Animales de Enfermedad , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Ratones , Mutación , Trastornos Mieloproliferativos/complicaciones , Trastornos Mieloproliferativos/tratamiento farmacológico , Trastornos Mieloproliferativos/genética
4.
Nat Commun ; 10(1): 5649, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31827082

RESUMEN

Clonal hematopoiesis of indeterminate potential (CHIP) increases with age and is associated with increased risks of hematological malignancies. While TP53 mutations have been identified in CHIP, the molecular mechanisms by which mutant p53 promotes hematopoietic stem and progenitor cell (HSPC) expansion are largely unknown. Here we discover that mutant p53 confers a competitive advantage to HSPCs following transplantation and promotes HSPC expansion after radiation-induced stress. Mechanistically, mutant p53 interacts with EZH2 and enhances its association with the chromatin, thereby increasing the levels of H3K27me3 in genes regulating HSPC self-renewal and differentiation. Furthermore, genetic and pharmacological inhibition of EZH2 decreases the repopulating potential of p53 mutant HSPCs. Thus, we uncover an epigenetic mechanism by which mutant p53 drives clonal hematopoiesis. Our work will likely establish epigenetic regulator EZH2 as a novel therapeutic target for preventing CHIP progression and treating hematological malignancies with TP53 mutations.


Asunto(s)
Epigénesis Genética , Enfermedades Hematológicas/metabolismo , Hematopoyesis , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Femenino , Enfermedades Hematológicas/genética , Enfermedades Hematológicas/fisiopatología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Masculino , Metilación , Ratones Endogámicos C57BL , Mutación , Unión Proteica
5.
Immunity ; 51(3): 479-490.e6, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31402259

RESUMEN

Natural killer (NK) cells are cytotoxic type 1 innate lymphoid cells (ILCs) that defend against viruses and mediate anti-tumor responses, yet mechanisms controlling their development and function remain incompletely understood. We hypothesized that the abundantly expressed microRNA-142 (miR-142) is a critical regulator of type 1 ILC biology. Interleukin-15 (IL-15) signaling induced miR-142 expression, whereas global and ILC-specific miR-142-deficient mice exhibited a cell-intrinsic loss of NK cells. Death of NK cells resulted from diminished IL-15 receptor signaling within miR-142-deficient mice, likely via reduced suppressor of cytokine signaling-1 (Socs1) regulation by miR-142-5p. ILCs persisting in Mir142-/- mice demonstrated increased expression of the miR-142-3p target αV integrin, which supported their survival. Global miR-142-deficient mice exhibited an expansion of ILC1-like cells concurrent with increased transforming growth factor-ß (TGF-ß) signaling. Further, miR-142-deficient mice had reduced NK-cell-dependent function and increased susceptibility to murine cytomegalovirus (MCMV) infection. Thus, miR-142 critically integrates environmental cues for proper type 1 ILC homeostasis and defense against viral infection.


Asunto(s)
Homeostasis/inmunología , Inmunidad Innata/inmunología , Linfocitos/inmunología , MicroARNs/inmunología , Animales , Línea Celular , Femenino , Células HEK293 , Humanos , Células Asesinas Naturales/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Muromegalovirus/inmunología , Células 3T3 NIH , Receptores de Interleucina-15/inmunología , Transducción de Señal/inmunología , Proteínas Supresoras de la Señalización de Citocinas/inmunología , Factor de Crecimiento Transformador beta/inmunología
6.
Cancer Res ; 78(13): 3510-3521, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29724719

RESUMEN

Point mutations in the seed sequence of miR-142-3p are present in a subset of acute myelogenous leukemia (AML) and in several subtypes of B-cell lymphoma. Here, we show that mutations associated with AML result both in loss of miR-142-3p function and in decreased miR-142-5p expression. Mir142 loss altered the hematopoietic differentiation of multipotent hematopoietic progenitors, enhancing their myeloid potential while suppressing their lymphoid potential. During hematopoietic maturation, loss of Mir142 increased ASH1L protein expression and consequently resulted in the aberrant maintenance of Hoxa gene expression in myeloid-committed hematopoietic progenitors. Mir142 loss also enhanced the disease-initiating activity of IDH2-mutant hematopoietic cells in mice. Together these data suggest a novel model in which miR-142, through repression of ASH1L activity, plays a key role in suppressing HOXA9/A10 expression during normal myeloid differentiation. AML-associated loss-of-function mutations of MIR142 disrupt this negative signaling pathway, resulting in sustained HOXA9/A10 expression in myeloid progenitors/myeloblasts and ultimately contributing to leukemic transformation.Significance: These findings provide mechanistic insights into the role of miRNAs in leukemogenesis and hematopoietic stem cell function. Cancer Res; 78(13); 3510-21. ©2018 AACR.


Asunto(s)
Proteínas de Unión al ADN/genética , Regulación Leucémica de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , Leucemia Mieloide Aguda/genética , MicroARNs/genética , MicroARNs/metabolismo , Factores de Transcripción/genética , Animales , Médula Ósea/patología , Carcinogénesis/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Células HEK293 , Células Madre Hematopoyéticas/patología , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas Homeobox A10 , Proteínas de Homeodominio/metabolismo , Humanos , Isocitrato Deshidrogenasa/genética , Leucemia Mieloide Aguda/patología , Mutación con Pérdida de Función , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación Puntual , Receptor EphB2 , Transducción de Señal/genética , Factores de Transcripción/metabolismo
7.
Nat Commun ; 9(1): 455, 2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29386642

RESUMEN

Hematopoietic clones harboring specific mutations may expand over time. However, it remains unclear how different cellular stressors influence this expansion. Here we characterize clonal hematopoiesis after two different cellular stressors: cytotoxic therapy and hematopoietic transplantation. Cytotoxic therapy results in the expansion of clones carrying mutations in DNA damage response genes, including TP53 and PPM1D. Analyses of sorted populations show that these clones are typically multilineage and myeloid-biased. Following autologous transplantation, most clones persist with stable chimerism. However, DNMT3A mutant clones often expand, while PPM1D mutant clones often decrease in size. To assess the leukemic potential of these expanded clones, we genotyped 134 t-AML/t-MDS samples. Mutations in non-TP53 DNA damage response genes are infrequent in t-AML/t-MDS despite several being commonly identified after cytotoxic therapy. These data suggest that different hematopoietic stressors promote the expansion of distinct long-lived clones, carrying specific mutations, whose leukemic potential depends partially on the mutations they harbor.


Asunto(s)
Antineoplásicos/farmacología , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de la radiación , Leucemia/etiología , Selección Genética , Adolescente , Adulto , Anciano , Estudios de Casos y Controles , Células Clonales/efectos de los fármacos , Células Clonales/efectos de la radiación , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Femenino , Genes p53 , Humanos , Linfoma/terapia , Masculino , Persona de Mediana Edad , Mieloma Múltiple/terapia , Proteína Fosfatasa 2C/genética , Adulto Joven
8.
Blood ; 129(11): 1409-1410, 2017 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-28302689
9.
Blood ; 127(7): 893-7, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26631115

RESUMEN

There is interest in using leukemia-gene panels and next-generation sequencing to assess acute myelogenous leukemia (AML) response to induction chemotherapy. Studies have shown that patients with AML in morphologic remission may continue to have clonal hematopoiesis with populations closely related to the founding AML clone and that this confers an increased risk of relapse. However, it remains unknown how induction chemotherapy influences the clonal evolution of a patient's nonleukemic hematopoietic population. Here, we report that 5 of 15 patients with genetic clearance of their founding AML clone after induction chemotherapy had a concomitant expansion of a hematopoietic population unrelated to the initial AML. These populations frequently harbored somatic mutations in genes recurrently mutated in AML or myelodysplastic syndromes and were detectable at very low frequencies at the time of AML diagnosis. These results suggest that nonleukemic hematopoietic stem and progenitor cells, harboring specific aging-acquired mutations, may have a competitive fitness advantage after induction chemotherapy, expand, and persist long after the completion of chemotherapy. Although the clinical importance of these "rising" clones remains to be determined, it will be important to distinguish them from leukemia-related populations when assessing for molecular responses to induction chemotherapy.


Asunto(s)
Envejecimiento , Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Mutación , Envejecimiento/genética , Envejecimiento/metabolismo , Envejecimiento/patología , Células Cultivadas , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Recurrencia
10.
Nature ; 518(7540): 552-555, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-25487151

RESUMEN

Therapy-related acute myeloid leukaemia (t-AML) and therapy-related myelodysplastic syndrome (t-MDS) are well-recognized complications of cytotoxic chemotherapy and/or radiotherapy. There are several features that distinguish t-AML from de novo AML, including a higher incidence of TP53 mutations, abnormalities of chromosomes 5 or 7, complex cytogenetics and a reduced response to chemotherapy. However, it is not clear how prior exposure to cytotoxic therapy influences leukaemogenesis. In particular, the mechanism by which TP53 mutations are selectively enriched in t-AML/t-MDS is unknown. Here, by sequencing the genomes of 22 patients with t-AML, we show that the total number of somatic single-nucleotide variants and the percentage of chemotherapy-related transversions are similar in t-AML and de novo AML, indicating that previous chemotherapy does not induce genome-wide DNA damage. We identified four cases of t-AML/t-MDS in which the exact TP53 mutation found at diagnosis was also present at low frequencies (0.003-0.7%) in mobilized blood leukocytes or bone marrow 3-6 years before the development of t-AML/t-MDS, including two cases in which the relevant TP53 mutation was detected before any chemotherapy. Moreover, functional TP53 mutations were identified in small populations of peripheral blood cells of healthy chemotherapy-naive elderly individuals. Finally, in mouse bone marrow chimaeras containing both wild-type and Tp53(+/-) haematopoietic stem/progenitor cells (HSPCs), the Tp53(+/-) HSPCs preferentially expanded after exposure to chemotherapy. These data suggest that cytotoxic therapy does not directly induce TP53 mutations. Rather, they support a model in which rare HSPCs carrying age-related TP53 mutations are resistant to chemotherapy and expand preferentially after treatment. The early acquisition of TP53 mutations in the founding HSPC clone probably contributes to the frequent cytogenetic abnormalities and poor responses to chemotherapy that are typical of patients with t-AML/t-MDS.


Asunto(s)
Linaje de la Célula/genética , Genes p53/genética , Leucemia Mieloide Aguda/inducido químicamente , Leucemia Mieloide Aguda/genética , Mutación/genética , Alelos , Animales , Linaje de la Célula/efectos de los fármacos , Proliferación Celular , Células Clonales , Daño del ADN , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Etilnitrosourea/farmacología , Evolución Molecular , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Heterocigoto , Humanos , Leucemia Mieloide Aguda/patología , Ratones , Modelos Genéticos , Mutación/efectos de los fármacos
11.
Methods Enzymol ; 468: 167-93, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-20946770

RESUMEN

RNA folds during transcription in the cell. Compared to most in vitro studies where the focus is generally on Mg(2+)-initiated refolding of fully synthesized transcripts, cotranscriptional RNA folding studies better replicate how RNA folds in a cellular environment. Unique aspects of cotranscriptional folding include the 5'- to 3'-polarity of RNA, the transcriptional speed, pausing properties of the RNA polymerase, the effect of the transcriptional complex and associated factors, and the effect of RNA-binding proteins. Identifying strategic pause sites can reveal insights on the folding pathway of the nascent transcript. Structural mapping of the paused transcription complexes identifies important folding intermediates along these pathways. Oligohybridization assays and the appearance of the catalytic activity of a ribozyme either in trans or in cis can be used to monitor cotranscriptional folding under a wide range of conditions. In our laboratory, these methodologies have been applied to study the folding of three highly conserved RNAs (RNase P, SRP, and tmRNA), several circularly permuted forms of a bacterial RNase P RNA, a riboswitch (thiM), and an aptamer-activated ribozyme (glmS).


Asunto(s)
ARN/química , Transcripción Genética/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Conformación de Ácido Nucleico , Hibridación de Ácido Nucleico , Proteínas de Unión al ARN/química
12.
Proc Natl Acad Sci U S A ; 104(46): 17995-8000, 2007 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-17986617

RESUMEN

RNA folding in the cell occurs during transcription. Expedient RNA folding must avoid the formation of undesirable structures as the nascent RNA emerges from the RNA polymerase. We show that efficient folding during transcription of three conserved noncoding RNAs from Escherichia coli, RNase P RNA, signal-recognition particle RNA, and tmRNA is facilitated by their cognate polymerase pausing at specific locations. These pause sites are located between the upstream and downstream portions of all of the native long-range helices in these noncoding RNAs. In the paused complexes, the nascent RNAs form labile structures that sequester these upstream portions in a manner to possibly guide folding. Both the pause sites and the secondary structure of the nonnative portions of the paused complexes are phylogenetically conserved among gamma-proteobacteria. We propose that specific pausing-induced structural formation is a general strategy to facilitate the folding of long-range helices. This polymerase-based mechanism may result in portions of noncoding RNA sequences being evolutionarily conserved for efficient folding during transcription.


Asunto(s)
Conformación de Ácido Nucleico , ARN Bacteriano/química , ARN no Traducido/química , Transcripción Genética , Secuencia de Bases , Escherichia coli/genética , Modelos Moleculares , Hibridación de Ácido Nucleico , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA