Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Intervalo de año de publicación
1.
Diabetologia ; 66(8): 1516-1531, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37311878

RESUMEN

AIMS/HYPOTHESIS: NF-κB activation unites metabolic and inflammatory responses in many diseases yet less is known about the role that NF-κB plays in normal metabolism. In this study we investigated how RELA impacts the beta cell transcriptional landscape and provides network control over glucoregulation. METHODS: We generated novel mouse lines harbouring beta cell-specific deletion of either the Rela gene, encoding the canonical NF-κB transcription factor p65 (ßp65KO mice), or the Ikbkg gene, encoding the NF-κB essential modulator NEMO (ßNEMOKO mice), as well as ßA20Tg mice that carry beta cell-specific and forced transgenic expression of the NF-κB-negative regulator gene Tnfaip3, which encodes the A20 protein. Mouse studies were complemented by bioinformatics analysis of human islet chromatin accessibility (assay for transposase-accessible chromatin with sequencing [ATAC-seq]), promoter capture Hi-C (pcHi-C) and p65 binding (chromatin immunoprecipitation-sequencing [ChIP-seq]) data to investigate genome-wide control of the human beta cell metabolic programme. RESULTS: Rela deficiency resulted in complete loss of stimulus-dependent inflammatory gene upregulation, consistent with its known role in governing inflammation. However, Rela deletion also rendered mice glucose intolerant because of functional loss of insulin secretion. Glucose intolerance was intrinsic to beta cells as ßp65KO islets failed to secrete insulin ex vivo in response to a glucose challenge and were unable to restore metabolic control when transplanted into secondary chemical-induced hyperglycaemic recipients. Maintenance of glucose tolerance required Rela but was independent of classical NF-κB inflammatory cascades, as blocking NF-κB signalling in vivo by beta cell knockout of Ikbkg (NEMO), or beta cell overexpression of Tnfaip3 (A20), did not cause severe glucose intolerance. Thus, basal p65 activity has an essential and islet-intrinsic role in maintaining normal glucose homeostasis. Genome-wide bioinformatic mapping revealed the presence of p65 binding sites in the promoter regions of specific metabolic genes and in the majority of islet enhancer hubs (~70% of ~1300 hubs), which are responsible for shaping beta cell type-specific gene expression programmes. Indeed, the islet-specific metabolic genes Slc2a2, Capn9 and Pfkm identified within the large network of islet enhancer hub genes showed dysregulated expression in ßp65KO islets. CONCLUSIONS/INTERPRETATION: These data demonstrate an unappreciated role for RELA as a regulator of islet-specific transcriptional programmes necessary for the maintenance of healthy glucose metabolism. These findings have clinical implications for the use of anti-inflammatories, which influence NF-κB activation and are associated with diabetes.


Asunto(s)
Intolerancia a la Glucosa , Factor de Transcripción ReIA , Animales , Humanos , Ratones , Cromatina , Glucosa , FN-kappa B/metabolismo , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo
2.
Microbiol Resour Announc ; 11(11): e0090522, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36314918

RESUMEN

Bacteriophage TaidaOne was isolated from soil collected in Taipei, Taiwan, using the host Streptomyces griseus. It is a siphovirus with a 56,183-bp genome that contains 86 protein-coding genes. Based on gene content similarity, it was assigned to actinobacteriophage subcluster BI1, within which only TaidaOne and GirlPower genomes contain an acetyltransferase homolog gene.

3.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34502038

RESUMEN

BACKGROUND: Rural/remote blood collection can cause delays in processing, reducing PBMC number, viability, cell composition and function. To mitigate these impacts, blood was stored at 4 °C prior to processing. Viable cell number, viability, immune phenotype, and Interferon-γ (IFN-γ) release were measured. Furthermore, the lowest protective volume of cryopreservation media and cell concentration was investigated. METHODS: Blood from 10 individuals was stored for up to 10 days. Flow cytometry and IFN-γ ELISPOT were used to measure immune phenotype and function on thawed PBMC. Additionally, PBMC were cryopreserved in volumes ranging from 500 µL to 25 µL and concentration from 10 × 106 cells/mL to 1.67 × 106 cells/mL. RESULTS: PBMC viability and viable cell number significantly reduced over time compared with samples processed immediately, except when stored for 24 h at RT. Monocytes and NK cells significantly reduced over time regardless of storage temperature. Samples with >24 h of RT storage had an increased proportion in Low-Density Neutrophils and T cells compared with samples stored at 4 °C. IFN-γ release was reduced after 24 h of storage, however not in samples stored at 4 °C for >24 h. The lowest protective volume identified was 150 µL with the lowest density of 6.67 × 106 cells/mL. CONCLUSION: A sample delay of 24 h at RT does not impact the viability and total viable cell numbers. When long-term delays exist (>4 d) total viable cell number and cell viability losses are reduced in samples stored at 4 °C. Immune phenotype and function are slightly altered after 24 h of storage, further impacts of storage are reduced in samples stored at 4 °C.


Asunto(s)
Conservación de la Sangre/métodos , Criopreservación/métodos , Monocitos/inmunología , Adulto , Conservación de la Sangre/normas , Criopreservación/normas , Humanos , Inmunofenotipificación , Interferón gamma/metabolismo , Monocitos/citología
4.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-876450

RESUMEN

@#The Siriraj I Gγ(Aγδβ)0 -thalassaemia is a novel mutation involving a 118kb deletion of the β-globin gene cluster. It was first reported in 2012 in two unrelated families from the southern part of Thailand. The carriers in the heterozygous state are clinically asymptomatic. Nonetheless, its complex interaction with other β-thalassaemia could give rise to different clinical phenotypes, ranging from mild thalassaemia intermedia to thalassaemia major. We report here a case of a six-year-old Malay boy, presented with pallor, growth failure and hepatosplenomegaly. His haemoglobin at presentation was 9.2g/dL with a mean cell haemoglobin of 22.6pg and a mean cell volume of 69.9fl. His peripheral blood smear showed features of thalassaemia intermedia. Haemoglobin (Hb) analysis revealed markedly raised Hb F (83%), normal HbA2 levels and absent HbA. Deoxyribonucleic acid (DNA) analysis showed compound heterozygous IVS1-1 (G→T) β-globin gene mutation and Siriraj I Gγ(Aγδβ)0 -deletion (genotype βIVS1-1/ β Siriraj I deletion). Both his father and elder sister are carriers of Siriraj I Gγ(Aγδβ)0 -thalassaemia while his mother carries IVS1-1 (G→T) gene mutation. Clinically, the patient is transfusion dependent on six weekly regime. To the best of our knowledge, this is the first reported case in Malaysia involving unique Siriraj I Gγ(Aγδβ)0 -thalassaemia and IVS1-1 (G→T) in a compound heterozygous state. In summary, detection of Siriraj I Gγ(Aγδβ)0 -thalassaemia is essential as this deletion can lead to severe disease upon interaction with a β-thalassemia point mutation as demonstrated in our case. The establishment of effective carrier screening and genetic counselling is important to prevent its adverse consequences.

5.
J Biol Chem ; 285(4): 2610-21, 2010 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-19940154

RESUMEN

3'-Deoxyadenosine, also known as cordycepin, is a known polyadenylation inhibitor with a large spectrum of biological activities, including anti-proliferative, pro-apoptotic and anti-inflammatory effects. In this study we confirm that cordycepin reduces the length of poly(A) tails, with some mRNAs being much more sensitive than others. The low doses of cordycepin that cause poly(A) changes also reduce the proliferation of NIH3T3 fibroblasts. At higher doses of the drug we observed inhibition of cell attachment and a reduction of focal adhesions. Furthermore, we observed a strong inhibition of total protein synthesis that correlates with an inhibition of mammalian target of rapamycin (mTOR) signaling, as observed by reductions in Akt kinase and 4E-binding protein (4EBP) phosphorylation. In 4EBP knock-out cells, the effect of cordycepin on translation is strongly reduced, confirming the role of this modification. In addition, the AMP-activated kinase (AMPK) was shown to be activated. Inhibition of AMPK prevented translation repression by cordycepin and abolished 4EBP1 dephosphorylation, indicating that the effect of cordycepin on mTOR signaling and protein synthesis is mediated by AMPK activation. We conclude that many of the reported biological effects of cordycepin are likely to be due to its effects on mTOR and AMPK signaling.


Asunto(s)
Antineoplásicos/farmacología , Adhesión Celular/efectos de los fármacos , Desoxiadenosinas/farmacología , Inhibidores de la Síntesis de la Proteína/farmacología , Transducción de Señal/efectos de los fármacos , Citoesqueleto de Actina/efectos de los fármacos , Adenilato Quinasa/metabolismo , Animales , División Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Células 3T3 NIH , Poliadenilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/efectos de los fármacos , Serina-Treonina Quinasas TOR
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...