Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 58
1.
Comput Brain Behav ; 7(2): 195-206, 2024.
Article En | MEDLINE | ID: mdl-38798787

Sequential sampling models of decision-making involve evidence accumulation over time and have been successful in capturing choice behaviour. A popular model is the drift-diffusion model (DDM). To capture the finer aspects of choice reaction times (RTs), time-variant gain features representing urgency signals have been implemented in DDM that can exhibit slower error RTs than correct RTs. However, time-variant gain is often implemented on both DDM's signal and noise features, with the assumption that increasing gain on the drift rate (due to urgency) is similar to DDM with collapsing decision bounds. Hence, it is unclear whether gain effects on just the signal or noise feature can lead to a different choice behaviour. This work presents an alternative DDM variant, focusing on the implications of time-variant gain mechanisms, constrained by model parsimony. Specifically, using computational modelling of choice behaviour of rats, monkeys, and humans, we systematically showed that time-variant gain only on the DDM's noise was sufficient to produce slower error RTs, as in monkeys, while time-variant gain only on drift rate leads to faster error RTs, as in rodents. We also found minimal effects of time-variant gain in humans. By highlighting these patterns, this study underscores the utility of group-level modelling in capturing general trends and effects consistent across species. Thus, time-variant gain on DDM's different components can lead to different choice behaviours, shed light on the underlying time-variant gain mechanisms for different species, and can be used for systematic data fitting. Supplementary Information: The online version contains supplementary material available at 10.1007/s42113-023-00194-1.

2.
Brief Bioinform ; 24(2)2023 03 19.
Article En | MEDLINE | ID: mdl-36813563

Cell-state transition can reveal additional information from single-cell ribonucleic acid (RNA)-sequencing data in time-resolved biological phenomena. However, most of the current methods are based on the time derivative of the gene expression state, which restricts them to the short-term evolution of cell states. Here, we present single-cell State Transition Across-samples of RNA-seq data (scSTAR), which overcomes this limitation by constructing a paired-cell projection between biological conditions with an arbitrary time span by maximizing the covariance between two feature spaces using partial least square and minimum squared error methods. In mouse ageing data, the response to stress in CD4+ memory T cell subtypes was found to be associated with ageing. A novel Treg subtype characterized by mTORC activation was identified to be associated with antitumour immune suppression, which was confirmed by immunofluorescence microscopy and survival analysis in 11 cancers from The Cancer Genome Atlas Program. On melanoma data, scSTAR improved immunotherapy-response prediction accuracy from 0.8 to 0.96.


Gene Expression Profiling , RNA , Animals , Mice , RNA/genetics , Gene Expression Profiling/methods , Sequence Analysis, RNA/methods , Genome
3.
Healthc Technol Lett ; 9(6): 102-109, 2022 Dec.
Article En | MEDLINE | ID: mdl-36514476

Biomarkers for Alzheimer's disease (AD) diagnosis do not always correlate reliably with cognitive symptoms, making clinical diagnosis inconsistent. In this study, the performance of a graphical neural network (GNN) classifier based on data-driven diagnostic classes from unsupervised clustering on heterogeneous data is compared to the performance of a classifier using clinician diagnosis as an outcome. Unsupervised clustering on tau-positron emission tomography (PET) and cognitive and functional assessment data was performed. Five clusters embedded in a non-linear uniform manifold approximation and project (UMAP) space were identified. The individual clusters revealed specific feature characteristics with respect to clinical diagnosis of AD, gender, family history, age, and underlying neurological risk factors (NRFs). In particular, one cluster comprised mainly diagnosed AD cases. All cases within this cluster were re-labelled AD cases. The re-labelled cases are characterized by high cerebrospinal fluid amyloid beta (CSF Aß) levels at a younger age, even though Aß data was not used for clustering. A GNN model was trained using the re-labelled data with a multiclass area-under-the-curve (AUC) of 95.2%, higher than the AUC of a GNN trained on clinician diagnosis (91.7%; p = 0.02). Overall, our work suggests that more objective cluster-based diagnostic labels combined with GNN classification may have value in clinical risk stratification and diagnosis of AD.

4.
BMC Med Inform Decis Mak ; 22(1): 262, 2022 10 07.
Article En | MEDLINE | ID: mdl-36207697

BACKGROUND: Dementia is a group of symptoms that largely affects older people. The majority of patients face behavioural and psychological symptoms (BPSD) during the course of their illness. Alzheimer's disease (AD) and vascular dementia (VaD) are two of the most prevalent types of dementia. Available medications provide symptomatic benefits and provide relief from BPSD and associated health issues. However, it is unclear how specific dementia, antidepressant, antipsychotic, antianxiety, and mood stabiliser drugs, used in the treatment of depression and dementia subtypes are prescribed in hospital admission, during hospital stay, and at the time of discharge. To address this, we apply multi-dimensional data analytical approaches to understand drug prescribing practices within hospitals in England and Wales. METHODS: We made use of the UK National Audit of Dementia (NAD) dataset and pre-processed the dataset. We evaluated the pairwise Pearson correlation of the dataset and selected key data features which are highly correlated with dementia subtypes. After that, we selected drug prescribing behaviours (e.g. specific medications at the time of admission, during the hospital stay, and upon discharge), drugs and disorders. Then to shed light on the relations across multiple features or dimensions, we carried out multiple regression analyses, considering the number of dementia, antidepressant, antipsychotic, antianxiety, mood stabiliser, and antiepileptic/anticonvulsant drug prescriptions as dependent variables, and the prescription of other drugs, number of patients with dementia subtypes (AD/VaD), and depression as independent variables. RESULTS: In terms of antidepressant drugs prescribed in hospital admission, during stay and discharge, the number of sertraline and venlafaxine prescriptions were associated with the number of VaD patients whilst the number of mirtazapine prescriptions was associated with frontotemporal dementia patients. During admission, the number of lamotrigine prescriptions was associated with frontotemporal dementia patients, and with the number of valproate and dosulepin prescriptions. During discharge, the number of mirtazapine prescriptions was associated with the number of donepezil prescriptions in conjunction with frontotemporal dementia patients. Finally, the number of prescriptions of donepezil/memantine at admission, during hospital stay and at discharge exhibited positive association with AD patients. CONCLUSION: Our analyses reveal a complex, multifaceted set of interactions among prescribed drug types, dementia subtypes, and depression.


Antipsychotic Agents , Dothiepin , Frontotemporal Dementia , Aged , Anticonvulsants/therapeutic use , Antidepressive Agents/therapeutic use , Antipsychotic Agents/therapeutic use , Depression/drug therapy , Depression/epidemiology , Donepezil/therapeutic use , Dothiepin/therapeutic use , Frontotemporal Dementia/drug therapy , Hospitals , Humans , Lamotrigine/therapeutic use , Memantine/therapeutic use , Mirtazapine/therapeutic use , NAD/therapeutic use , Sertraline/therapeutic use , Valproic Acid/therapeutic use , Venlafaxine Hydrochloride/therapeutic use , Wales/epidemiology
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4929-4933, 2022 07.
Article En | MEDLINE | ID: mdl-36085984

Dementia with Lewy Bodies (DLB) is the second most common form of dementia, but diagnostic markers for DLB can be expensive and inaccessible, and many cases of DLB are undiagnosed. This work applies machine learning techniques to determine the feasibility of distinguishing DLB from Alzheimer's Disease (AD) using heterogeneous data features. The Repeated Incremental Pruning to Produce Error Reduction (RIPPER) algorithm was first applied using a Leave-One-Out Cross-Validation protocol to a dataset comprising DLB and AD cases. Then, interpretable association rule-based diagnostic classifiers were obtained for distinguishing DLB from AD. The various diagnostic classifiers generated by this process had high accuracy over the whole dataset (mean accuracy of 94%). The mean accuracy in classifying their out-of-sample case was 80.5%. Every classifier generated consisted of very simple structure, each using 1-2 classification rules and 1-3 data features. As a group, the classifiers were heterogeneous and used several different data features. In particular, some of the classifiers used very simple and inexpensive diagnostic features, yet with high diagnostic accuracy. This work suggests that opportunities may exist for incorporating accessible diagnostic assessments while improving diagnostic rate for DLB. Clinical Relevance- Simple and interpretable high-performing machine learning algorithms identified a variety of readily available clinical assessments for differential diagnosis of dementia offering the opportunities to incorporate various simple and inexpensive screening tests for DLB and addressing the problem of DLB underdiagnosis.


Alzheimer Disease , Lewy Body Disease , Alzheimer Disease/diagnosis , Diagnosis, Differential , Feasibility Studies , Humans , Lewy Body Disease/diagnosis , Machine Learning
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 1098-1104, 2022 07.
Article En | MEDLINE | ID: mdl-36086363

Current machine learning techniques for dementia diagnosis often do not take into account real-world practical constraints, which may include, for example, the cost of diagnostic assessment time and financial budgets. In this work, we built on previous cost-sensitive feature selection approaches by generalising to multiple cost types, while taking into consideration that stakeholders attempting to optimise the dementia care pathway might face multiple non-fungible budget constraints. Our new optimisation algorithm involved the searching of cost-weighting hyperparameters while constrained by total budgets. We then provided a proof of concept using both assessment time cost and financial budget cost. We showed that budget constraints could control the feature selection process in an intuitive and practical manner, while adjusting the hyperparameter increased the range of solutions selected by feature selection. We further showed that our budget-constrained cost optimisation framework could be implemented in a user-friendly graphical user interface sandbox tool to encourage non-technical users and stakeholders to adopt and to further explore and audit the model - a humans-in-the-loop approach. Overall, we suggest that setting budget constraints initially and then fine tuning the cost-weighting hyperparameters can be an effective way to perform feature selection where multiple cost constraints exist, which will in turn lead to more realistic optimising and redesigning of dementia diagnostic assessments. Clinical Relevance-By optimising diagnostic accuracy against various costs (e.g. assessment administration time and financial budget) predictive yet practical dementia diagnostic assessments can be redesigned to suit clinical use.


Alzheimer Disease , Algorithms , Alzheimer Disease/diagnosis , Humans , Machine Learning
7.
IEEE J Transl Eng Health Med ; 10: 4900809, 2022.
Article En | MEDLINE | ID: mdl-35557505

OBJECTIVE: Despite the potential of machine learning techniques to improve dementia diagnostic processes, research outcomes are often not readily translated to or adopted in clinical practice. Importantly, the time taken to administer diagnostic assessment has yet to be taken into account in feature-selection based optimisation for dementia diagnosis. We address these issues by considering the impact of assessment time as a practical constraint for feature selection of cognitive and functional assessments in Alzheimer's disease diagnosis. METHODS: We use three different feature selection algorithms to select informative subsets of dementia assessment items from a large open-source dementia dataset. We use cost-sensitive feature selection to optimise our feature selection results for assessment time as well as diagnostic accuracy. To encourage clinical adoption and further evaluation of our proposed accuracy-vs-cost optimisation algorithms, we also implement a sandbox-like toolbox with graphical user interface to evaluate user-chosen subsets of assessment items. RESULTS: We find that there are subsets of accuracy-cost optimised assessment items that can perform better in terms of diagnostic accuracy and/or total assessment time than most other standard assessments. DISCUSSION: Overall, our analysis and accompanying sandbox tool can facilitate clinical users and other stakeholders to apply their own domain knowledge to analyse and decide which dementia diagnostic assessment items are useful, and aid the redesigning of dementia diagnostic assessments. Clinical Impact (Clinical Research): By optimising diagnostic accuracy and assessment time, we redesign predictive and efficient dementia diagnostic assessments and develop a sandbox interface to facilitate evaluation and testing by clinicians and non-specialists.


Alzheimer Disease , Dementia , Alzheimer Disease/diagnosis , Dementia/diagnosis , Disease Progression , Humans , Sensitivity and Specificity
8.
IEEE J Biomed Health Inform ; 26(2): 818-827, 2022 02.
Article En | MEDLINE | ID: mdl-34288882

Accurate computational models for clinical decision support systems require clean and reliable data but, in clinical practice, data are often incomplete. Hence, missing data could arise not only from training datasets but also test datasets which could consist of a single undiagnosed case, an individual. This work addresses the problem of extreme missingness in both training and test data by evaluating multiple imputation and classification workflows based on both diagnostic classification accuracy and computational cost. Extreme missingness is defined as having ∼50% of the total data missing in more than half the data features. In particular, we focus on dementia diagnosis due to long time delays, high variability, high attrition rates and lack of practical data imputation strategies in its diagnostic pathway. We identified and replicated the extreme missingness structure of data from a real-world memory clinic on a larger open dataset, with the original complete data acting as ground truth. Overall, we found that computational cost, but not accuracy, varies widely for various imputation and classification approaches. Particularly, we found that iterative imputation on the training dataset combined with a reduced-feature classification model provides the best approach, in terms of speed and accuracy. Taken together, this work has elucidated important factors to be considered when developing a predictive model for a dementia diagnostic support system.


Dementia , Data Collection , Dementia/diagnosis , Humans
9.
Front Comput Neurosci ; 16: 950489, 2022.
Article En | MEDLINE | ID: mdl-36761394

Degenerate neural circuits perform the same function despite being structurally different. However, it is unclear whether neural circuits with interacting neuromodulator sources can themselves degenerate while maintaining the same neuromodulatory function. Here, we address this by computationally modeling the neural circuits of neuromodulators serotonin and dopamine, local glutamatergic and GABAergic interneurons, and their possible interactions, under reward/punishment-based conditioning tasks. The neural modeling is constrained by relevant experimental studies of the VTA or DRN system using, e.g., electrophysiology, optogenetics, and voltammetry. We first show that a single parsimonious, sparsely connected neural circuit model can recapitulate several separate experimental findings that indicated diverse, heterogeneous, distributed, and mixed DRNVTA neuronal signaling in reward and punishment tasks. The inability of this model to recapitulate all observed neuronal signaling suggests potentially multiple circuits acting in parallel. Then using computational simulations and dynamical systems analysis, we demonstrate that several different stable circuit architectures can produce the same observed network activity profile, hence demonstrating degeneracy. Due to the extensive D2-mediated connections in the investigated circuits, we simulate the D2 receptor agonist by increasing the connection strengths emanating from the VTA DA neurons. We found that the simulated D2 agonist can distinguish among sub-groups of the degenerate neural circuits based on substantial deviations in specific neural populations' activities in reward and punishment conditions. This forms a testable model prediction using pharmacological means. Overall, this theoretical work suggests the plausibility of degeneracy within neuromodulator circuitry and has important implications for the stable and robust maintenance of neuromodulatory functions.

10.
Brain Inform ; 8(1): 24, 2021 Nov 02.
Article En | MEDLINE | ID: mdl-34725742

Magnetoencephalography (MEG) has been combined with machine learning techniques, to recognize the Alzheimer's disease (AD), one of the most common forms of dementia. However, most of the previous studies are limited to binary classification and do not fully utilize the two available MEG modalities (extracted using magnetometer and gradiometer sensors). AD consists of several stages of progression, this study addresses this limitation by using both magnetometer and gradiometer data to discriminate between participants with AD, AD-related mild cognitive impairment (MCI), and healthy control (HC) participants in the form of a three-class classification problem. A series of wavelet-based biomarkers are developed and evaluated, which concurrently leverage the spatial, frequency and time domain characteristics of the signal. A bimodal recognition system based on an improved score-level fusion approach is proposed to reinforce interpretation of the brain activity captured by magnetometers and gradiometers. In this preliminary study, it was found that the markers derived from gradiometer tend to outperform the magnetometer-based markers. Interestingly, out of the total 10 regions of interest, left-frontal lobe demonstrates about 8% higher mean recognition rate than the second-best performing region (left temporal lobe) for AD/MCI/HC classification. Among the four types of markers proposed in this work, the spatial marker developed using wavelet coefficients provided the best recognition performance for the three-way classification. Overall, the proposed approach provides promising results for the potential of AD/MCI/HC three-way classification utilizing the bimodal MEG data.

11.
Sensors (Basel) ; 21(18)2021 Sep 16.
Article En | MEDLINE | ID: mdl-34577423

Studies on developing effective neuromarkers based on magnetoencephalographic (MEG) signals have been drawing increasing attention in the neuroscience community. This study explores the idea of using source-based magnitude-squared spectral coherence as a spatial indicator for effective regions of interest (ROIs) localization, subsequently discriminating the participants with mild cognitive impairment (MCI) from a group of age-matched healthy control (HC) elderly participants. We found that the cortical regions could be divided into two distinctive groups based on their coherence indices. Compared to HC, some ROIs showed increased connectivity (hyper-connected ROIs) for MCI participants, whereas the remaining ROIs demonstrated reduced connectivity (hypo-connected ROIs). Based on these findings, a series of wavelet-based source-level neuromarkers for MCI detection are proposed and explored, with respect to the two distinctive ROI groups. It was found that the neuromarkers extracted from the hyper-connected ROIs performed significantly better for MCI detection than those from the hypo-connected ROIs. The neuromarkers were classified using support vector machine (SVM) and k-NN classifiers and evaluated through Monte Carlo cross-validation. An average recognition rate of 93.83% was obtained using source-reconstructed signals from the hyper-connected ROI group. To better conform to clinical practice settings, a leave-one-out cross-validation (LOOCV) approach was also employed to ensure that the data for testing was from a participant that the classifier has never seen. Using LOOCV, we found the best average classification accuracy was reduced to 83.80% using the same set of neuromarkers obtained from the ROI group with functional hyper-connections. This performance surpassed the results reported using wavelet-based features by approximately 15%. Overall, our work suggests that (1) certain ROIs are particularly effective for MCI detection, especially when multi-resolution wavelet biomarkers are employed for such diagnosis; (2) there exists a significant performance difference in system evaluation between research-based experimental design and clinically accepted evaluation standards.


Alzheimer Disease , Cognitive Dysfunction , Aged , Cognitive Dysfunction/diagnosis , Humans , Magnetic Resonance Imaging , Magnetoencephalography , Support Vector Machine
12.
Front Cell Neurosci ; 15: 682460, 2021.
Article En | MEDLINE | ID: mdl-34322000

Neurotransmitter dynamics within neuronal synapses can be controlled by astrocytes and reflect key contributors to neuronal activity. In particular, Glutamate (Glu) released by activated neurons is predominantly removed from the synaptic space by perisynaptic astrocytic transporters EAAT-2 (GLT-1). In previous work, we showed that the time course of Glu transport is affected by ionic concentration gradients either side of the astrocytic membrane and has the propensity for influencing postsynaptic neuronal excitability. Experimental findings co-localize GABA transporters GAT-3 with EAAT-2 on the perisynaptic astrocytic membrane. While these transporters are unlikely to facilitate the uptake of synaptic GABA, this paper presents simulation results which demonstrate the coupling of EAAT-2 and GAT-3, giving rise to the ionic-dependent reversed transport of GAT-3. The resulting efflux of GABA from the astrocyte to the synaptic space reflects an important astrocytic mechanism for modulation of hyperexcitability. Key results also illustrate an astrocytic-mediated modulation of synaptic neuronal excitation by released GABA at the glutamatergic synapse.

14.
J Neurosci Methods ; 348: 108991, 2021 01 15.
Article En | MEDLINE | ID: mdl-33181166

BACKGROUND: Brain functional connectivity (FC) analyses based on magneto/electroencephalography (M/EEG) signals have yet to exploit the intrinsic high-dimensional information. Typically, these analyses are constrained to regions of interest to avoid the curse of dimensionality, with the latter leading to conservative hypothesis testing. NEW METHOD: We removed such constraint by estimating high-dimensional source-based M/EEG-FC using cluster-permutation statistic (CPS) and demonstrated the feasibility of this approach by identifying resting-state changes in mild cognitive impairment (MCI), a prodromal stage of Alzheimer's disease. Particularly, we proposed a unified framework for CPS analysis together with a novel neighbourhood measure to estimate more compact and neurophysiological plausible neural communication. As clusters could more confidently reveal interregional communication, we proposed and tested a cluster-strength index to demonstrate other advantages of CPS analysis. RESULTS: We found clusters of increased communication or hypersynchronization in MCI compared to healthy controls in delta (1-4 Hz) and higher-theta (6-8 Hz) bands oscillations. These mainly consisted of interactions between occipitofrontal and occipitotemporal regions in the left hemisphere, which may be critically affected in the early stages of Alzheimer's disease. CONCLUSIONS: Our approach could be important to create high-resolution FC maps from neuroimaging studies in general, allowing the multimodal analysis of neural communication across multiple spatial scales. Particularly, FC clusters more robustly represent the interregional communication by identifying dense bundles of connections that are less sensitive to inter-individual anatomical and functional variability. Overall, this approach could help to better understand neural information processing in healthy and disease conditions as needed for developing biomarker research.


Brain Mapping , Magnetoencephalography , Brain/diagnostic imaging , Electroencephalography , Neural Pathways/diagnostic imaging
15.
BMC Med ; 18(1): 398, 2020 12 16.
Article En | MEDLINE | ID: mdl-33323116

BACKGROUND: Dementia is caused by a variety of neurodegenerative diseases and is associated with a decline in memory and other cognitive abilities, while inflicting an enormous socioeconomic burden. The complexity of dementia and its associated comorbidities presents immense challenges for dementia research and care, particularly in clinical decision-making. MAIN BODY: Despite the lack of disease-modifying therapies, there is an increasing and urgent need to make timely and accurate clinical decisions in dementia diagnosis and prognosis to allow appropriate care and treatment. However, the dementia care pathway is currently suboptimal. We propose that through computational approaches, understanding of dementia aetiology could be improved, and dementia assessments could be more standardised, objective and efficient. In particular, we suggest that these will involve appropriate data infrastructure, the use of data-driven computational neurology approaches and the development of practical clinical decision support systems. We also discuss the technical, structural, economic, political and policy-making challenges that accompany such implementations. CONCLUSION: The data-driven era for dementia research has arrived with the potential to transform the healthcare system, creating a more efficient, transparent and personalised service for dementia.


Computational Biology/trends , Critical Pathways , Databases, Factual/supply & distribution , Dementia/therapy , Neurology/trends , Big Data/supply & distribution , Comorbidity , Computational Biology/methods , Computational Biology/organization & administration , Critical Pathways/organization & administration , Critical Pathways/standards , Critical Pathways/statistics & numerical data , Data Science/methods , Data Science/organization & administration , Data Science/trends , Dementia/epidemiology , Humans , Neurology/methods , Neurology/organization & administration
16.
Alzheimers Dement (Amst) ; 12(1): e12116, 2020.
Article En | MEDLINE | ID: mdl-33088897

INTRODUCTION: Conflicting results on dementia risk factors have been reported across studies. We hypothesize that variation in data preparation methods may partially contribute to this issue. METHODS: We propose a comprehensive data preparation approach comparing individuals with stable diagnosis over time to those who progress to mild cognitive impairment (MCI)/dementia. This was compared to the often-used "baseline" analysis. Multivariate logistic regression was used to evaluate both methods. RESULTS: The results obtained from sensitivity analyses were consistent with those from our multi-time-point data preparation approach, exhibiting its robustness. Compared to analysis using only baseline data, the number of significant risk factors identified in progression analyses was substantially lower. Additionally, we found that moderate depression increased healthy-to-MCI/dementia risk, while hypertension reduced MCI-to-dementia risk. DISCUSSION: Overall, multi-time-point-based data preparation approaches may pave the way for a better understanding of dementia risk factors, and address some of the reproducibility issues in the field.

17.
Neuropharmacology ; 174: 108118, 2020 09 01.
Article En | MEDLINE | ID: mdl-32380022

Alzheimer's disease (AD) is an age-specific neurodegenerative disease that compromises cognitive functioning and impacts the quality of life of an individual. Pathologically, AD is characterised by abnormal accumulation of beta-amyloid (Aß) and hyperphosphorylated tau protein. Despite research advances over the last few decades, there is currently still no cure for AD. Although, medications are available to control some behavioural symptoms and slow the disease's progression, most prescribed medications are based on cholinesterase inhibitors. Over the last decade, there has been increased attention towards novel drugs, targeting alternative neurotransmitter pathways, particularly those targeting serotonergic (5-HT) system. In this review, we focused on 5-HT receptor (5-HTR) mediated signalling and drugs that target these receptors. These pathways regulate key proteins and kinases such as GSK-3 that are associated with abnormal levels of Aß and tau in AD. We then review computational studies related to 5-HT signalling pathways with the potential for providing deeper understanding of AD pathologies. In particular, we suggest that multiscale and multilevel modelling approaches could potentially provide new insights into AD mechanisms, and towards discovering novel 5-HTR based therapeutic targets.


Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Patient-Specific Modeling , Receptors, Serotonin/metabolism , Serotonin Agents/metabolism , Serotonin Agents/therapeutic use , Animals , Humans , Patient-Specific Modeling/trends , Treatment Outcome
18.
PLoS Comput Biol ; 16(2): e1007149, 2020 02.
Article En | MEDLINE | ID: mdl-32012147

Decisions are occasionally accompanied by changes-of-mind. While considered a hallmark of cognitive flexibility, the mechanisms underlying changes-of-mind remain elusive. Previous studies on perceptual decision making have focused on changes-of-mind that are primarily driven by the accumulation of additional noisy sensory evidence after the initial decision. In a motion discrimination task, we demonstrate that changes-of-mind can occur even in the absence of additional evidence after the initial decision. Unlike previous studies of changes-of-mind, the majority of changes-of-mind in our experiment occurred in trials with prolonged initial response times. This suggests a distinct mechanism underlying such changes. Using a neural circuit model of decision uncertainty and change-of-mind behaviour, we demonstrate that this phenomenon is associated with top-down signals mediated by an uncertainty-monitoring neural population. Such a mechanism is consistent with recent neurophysiological evidence showing a link between changes-of-mind and elevated top-down neural activity. Our model explains the long response times associated with changes-of-mind through high decision uncertainty levels in such trials, and accounts for the observed motor response trajectories. Overall, our work provides a computational framework that explains changes-of-mind in the absence of new post-decision evidence.


Decision Making/physiology , Adult , Computational Biology , Female , Humans , Male , Models, Neurological , Reaction Time/physiology , Uncertainty , Young Adult
19.
Front Robot AI ; 7: 94, 2020.
Article En | MEDLINE | ID: mdl-33501261

Multimodal integration is an important process in perceptual decision-making. In humans, this process has often been shown to be statistically optimal, or near optimal: sensory information is combined in a fashion that minimizes the average error in perceptual representation of stimuli. However, sometimes there are costs that come with the optimization, manifesting as illusory percepts. We review audio-visual facilitations and illusions that are products of multisensory integration, and the computational models that account for these phenomena. In particular, the same optimal computational model can lead to illusory percepts, and we suggest that more studies should be needed to detect and mitigate these illusions, as artifacts in artificial cognitive systems. We provide cautionary considerations when designing artificial cognitive systems with the view of avoiding such artifacts. Finally, we suggest avenues of research toward solutions to potential pitfalls in system design. We conclude that detailed understanding of multisensory integration and the mechanisms behind audio-visual illusions can benefit the design of artificial cognitive systems.

20.
Expert Syst Appl ; 130: 157-171, 2019 Sep 15.
Article En | MEDLINE | ID: mdl-31402810

Computerized clinical decision support systems can help to provide objective, standardized, and timely dementia diagnosis. However, current computerized systems are mainly based on group analysis, discrete classification of disease stages, or expensive and not readily accessible biomarkers, while current clinical practice relies relatively heavily on cognitive and functional assessments (CFA). In this study, we developed a computational framework using a suite of machine learning tools for identifying key markers in predicting the severity of Alzheimer's disease (AD) from a large set of biological and clinical measures. Six machine learning approaches, namely Kernel Ridge Regression (KRR), Support Vector Regression, and k-Nearest Neighbor for regression and Support Vector Machine (SVM), Random Forest, and k-Nearest Neighbor for classification, were used for the development of predictive models. We demonstrated high predictive power of CFA. Predictive performance of models incorporating CFA was shown to consistently have higher accuracy than those based solely on biomarker modalities. We found that KRR and SVM were the best performing regression and classification methods respectively. The optimal SVM performance was observed for a set of four CFA test scores (FAQ, ADAS13, MoCA, MMSE) with multi-class classification accuracy of 83.0%, 95%CI = (72.1%, 93.8%) while the best performance of the KRR model was reported with combined CFA and MRI neuroimaging data, i.e., R 2 = 0.874, 95%CI = (0.827, 0.922). Given the high predictive power of CFA and their widespread use in clinical practice, we then designed a data-driven and self-adaptive computerized clinical decision support system (CDSS) prototype for evaluating the severity of AD of an individual on a continuous spectrum. The system implemented an automated computational approach for data pre-processing, modelling, and validation and used exclusively the scores of selected cognitive measures as data entries. Taken together, we have developed an objective and practical CDSS to aid AD diagnosis.

...