Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Rep ; 39: 101779, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39099605

RESUMEN

Severe fever with thrombocytopenia syndrome virus (SFTSV) or Dabie bandavirus is an emerging pathogen responsible for SFTS. It is considered a novel threat to human health, given the high associated fatality. SFTSV is a segmented negative-strand RNA virus containing three single-stranded RNAs, with the M segment encoding the glycoproteins Gn and Gc. Gc is vital for viral entry into the host cell surface, along with the Gn protein. As the Gc is the surface-exposable antigen from virions, it is a critical diagnostic marker of infection. Although various SFTSV Gn or N protein-based sero-diagnostic methods have been developed, there are no commercially available sero-diagnostic kits. Therefore, we generated monoclonal antibodies (mAbs) against SFTSV Gc and explored their application in serum diagnostic tests to develop sensitive serodiagnostic tools covering broad-range genotypes (A to F). First, 10 SFTSV Gc antibody-binding fragments (Fabs) were isolated using a phage display system and converted into human IgGs. Enzyme-linked immunosorbent assays (ELISA) of the SFTSV and Rift Valley fever virus (RVFV: same genus as SFTSV) Gc antigens showed that all antibodies attached to the SFTSV Gc protein had high affinity. An immunofluorescence assay (IFA), to verify the cross-reactivity of seven antibodies with high affinities for various SFTSV genotypes (A, B2, B3, D, and F) and detect mAb binding with intact Gc proteins, revealed that five IgG type mAbs were bound to intact Gc proteins of various genotypes. Six high-affinity antibodies were selected using ELISA and IFA. The binding capacity of the six antibodies against the SFTSV Gc antigen was measured using surface plasmon resonance. All antibodies had high binding capacity. Consequently, these antibodies serve as valuable markers in the serological diagnosis of SFTSV.

2.
Mol Pharm ; 21(9): 4336-4346, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39058261

RESUMEN

Given the previous SARS-CoV-2 pandemic and the inherent unpredictability of viral antigenic drift and shift, preemptive development of diverse neutralizing antibodies targeting a broad spectrum of epitopes is essential to ensure immediate therapeutic and prophylactic interventions during emerging outbreaks. In this study, we present a monoclonal antibody engineered for cross-reactivity to both wild-type and Delta RBDs, which, surprisingly, demonstrates enhanced neutralizing activity against the Omicron variant despite a significant number of mutations. Using an Escherichia coli inner membrane display of a human naïve antibody library, we identified antibodies specific to the wild-type SARS-CoV-2 receptor binding domain (RBD). Subsequent directed evolution via yeast surface display yielded JS18.1, an antibody with high binding affinity for both the Delta and Kappa RBDs, as well as enhanced binding to other RBDs (wild-type, Alpha, Beta, Gamma, Kappa, and Mu). Notably, JS18.1 (engineered for wild-type and Delta RBDs) exhibits enhanced neutralizing capability against the Omicron variant and binds to RBDs noncompetitively with ACE2, distinguishing it from other previously reported antibodies. This underscores the potential of pre-existing antibodies to neutralize emerging SARS-CoV-2 strains and offers insights into strategies to combat emerging viruses.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/virología , Anticuerpos Monoclonales/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/química , Pruebas de Neutralización , Epítopos/inmunología , Mutación , Reacciones Cruzadas/inmunología , Dominios Proteicos/inmunología
3.
Emerg Microbes Infect ; 11(1): 2315-2325, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36006772

RESUMEN

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in significant morbidity and mortality worldwide. Despite a successful vaccination programme, the emergence of mutated variants that can escape current levels of immunity mean infections continue. Herein, we report the development of CT-P63, a broad-spectrum neutralizing monoclonal antibody. In vitro studies demonstrated potent neutralizing activity against the most prevalent variants, including Delta and the BA.1 and BA.2 sub-lineages of Omicron. In a transgenic mouse model, prophylactic CT-P63 significantly reduced wild-type viral titres in the respiratory tract and CT-P63 treatment proved efficacious against infection with Beta, Delta, and Omicron variants of SARS-CoV-2 with no detectable infectious virus in the lungs of treated animals. A randomized, double-blind, parallel-group, placebo-controlled, Phase I, single ascending dose study in healthy volunteers (NCT05017168) confirmed the safety, tolerability, and pharmacokinetics of CT-P63. Twenty-four participants were randomized and received the planned dose of CT-P63 or placebo. The safety and tolerability of CT-P63 were evaluated as primary objectives. Eight participants (33.3%) experienced a treatment-emergent adverse event (TEAE), including one grade ≥3 (blood creatine phosphokinase increased). There were no deaths, treatment-emergent serious adverse events, TEAEs of special interest, or TEAEs leading to study drug discontinuation in the CT-P63 groups. Serum CT-P63 concentrations rapidly peaked before declining in a biphasic manner and systemic exposure was dose proportional. Overall, CT-P63 was clinically safe and showed broad-spectrum neutralizing activity against SARS-CoV-2 variants in vitro and in vivo.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Anticuerpos ampliamente neutralizantes , Creatina Quinasa , Humanos , Ratones , Glicoproteína de la Espiga del Coronavirus
4.
Sci Rep ; 12(1): 1260, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35075213

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic virus, responsible for outbreaks of a severe respiratory illness in humans with a fatality rate of 30%. Currently, there are no vaccines or United States food and drug administration (FDA)-approved therapeutics for humans. The spike protein displayed on the surface of MERS-CoV functions in the attachment and fusion of virions to host cellular membranes and is the target of the host antibody response. Here, we provide a molecular method for neutralizing MERS-CoV through potent antibody-mediated targeting of the receptor-binding subdomain (RBD) of the spike protein. The structural characterization of the neutralizing antibody (KNIH90-F1) complexed with RBD using X-ray crystallography revealed three critical epitopes (D509, R511, and E513) in the RBD region of the spike protein. Further investigation of MERS-CoV mutants that escaped neutralization by the antibody supported the identification of these epitopes in the RBD region. The neutralizing activity of this antibody is solely provided by these specific molecular structures. This work should contribute to the development of vaccines or therapeutic antibodies for MERS-CoV.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/química , Coronavirus del Síndrome Respiratorio de Oriente Medio/química , Cristalografía por Rayos X , Humanos , Dominios Proteicos
5.
Clin Microbiol Infect ; 28(4): 614.e1-614.e4, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34954127

RESUMEN

OBJECTIVE: Neutralizing antibodies are among the factors used to measure an individual's immune status for the control of infectious diseases. We aimed to confirm the persistence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibody levels in patients who had recovered from coronavirus disease 2019 (COVID-19). METHODS: Plasma donors in South Korea who had completely recovered from SARS-CoV-2 infection had follow-up testing to determine the persistence of neutralizing antibodies using a plaque-reduction neutralization test and ELISA. RESULTS: Of the 111 participants-aged 20-29 years, 37/111 (33.3%); 30-39 years, 17/111 (15.3%); 40-49 years, 23/111 (20.7%); 50-59 years, 21/111 (18.9%); 60-65 years, 13/111 (11.7%); male, 43/111 (38.7%); female, 68/111 (61.3%)-66.1% still had neutralizing antibodies approximately 9 months (range 255-302 days) after confirmation of the diagnosis. CONCLUSIONS: In this study we analysed the titre of neutralizing antibodies associated with predicting immune status in individuals with natural infection. Information about the persistence and change in levels of neutralizing antibodies against SARS-CoV-2 can be utilized to provide evidence for developing vaccination schedules for individuals with previous infection.


Asunto(s)
COVID-19 , Adulto , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Formación de Anticuerpos , Femenino , Humanos , Masculino , SARS-CoV-2 , Adulto Joven
6.
Nat Commun ; 12(1): 288, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436577

RESUMEN

Vaccines and therapeutics are urgently needed for the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we screen human monoclonal antibodies (mAb) targeting the receptor binding domain (RBD) of the viral spike protein via antibody library constructed from peripheral blood mononuclear cells of a convalescent patient. The CT-P59 mAb potently neutralizes SARS-CoV-2 isolates including the D614G variant without antibody-dependent enhancement effect. Complex crystal structure of CT-P59 Fab/RBD shows that CT-P59 blocks interaction regions of RBD for angiotensin converting enzyme 2 (ACE2) receptor with an orientation that is notably different from previously reported RBD-targeting mAbs. Furthermore, therapeutic effects of CT-P59 are evaluated in three animal models (ferret, hamster, and rhesus monkey), demonstrating a substantial reduction in viral titer along with alleviation of clinical symptoms. Therefore, CT-P59 may be a promising therapeutic candidate for COVID-19.


Asunto(s)
Anticuerpos Neutralizantes/farmacología , Tratamiento Farmacológico de COVID-19 , Unión Proteica/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/efectos de los fármacos , Enzima Convertidora de Angiotensina 2/química , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Chlorocebus aethiops , Modelos Animales de Enfermedad , Femenino , Hurones , Humanos , Leucocitos Mononucleares , Macaca mulatta , Masculino , Mesocricetus , Modelos Moleculares , Conformación Proteica , Glicoproteína de la Espiga del Coronavirus/química , Células Vero
7.
PLoS One ; 15(5): e0232757, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32384116

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe respiratory infection and continues to infect humans, thereby contributing to a high mortality rate (34.3% in 2019). In the absence of an available licensed vaccine and antiviral agent, therapeutic human antibodies have been suggested as candidates for treatment. In this study, human monoclonal antibodies were isolated by sorting B cells from patient's PBMC cells with prefusion stabilized spike (S) probes and a direct immunoglobulin cloning strategy. We identified six receptor-binding domain (RBD)-specific and five S1 (non-RBD)-specific antibodies, among which, only the RBD-specific antibodies showed high neutralizing potency (IC50 0.006-1.787 µg/ml) as well as high affinity to RBD. Notably, passive immunization using a highly potent antibody (KNIH90-F1) at a relatively low dose (2 mg/kg) completely protected transgenic mice expressing human DPP4 against MERS-CoV lethal challenge. These results suggested that human monoclonal antibodies isolated by using the rationally designed prefusion MERS-CoV S probe could be considered potential candidates for the development of therapeutic and/or prophylactic antiviral agents for MERS-CoV human infection.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Anticuerpos Antivirales/farmacología , Infecciones por Coronavirus/tratamiento farmacológico , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales/inmunología , Antivirales/farmacología , Línea Celular , Chlorocebus aethiops , Dipeptidil Peptidasa 4/genética , Humanos , Leucocitos Mononucleares/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , República de Corea , Células Vero
8.
Mol Cells ; 42(10): 721-728, 2019 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-31600868

RESUMEN

Non-structural protein 1 (NS1) of influenza virus has been shown to inhibit the innate immune response by blocking the induction of interferon (IFN). In this study, we isolated two single-stranded RNA aptamers specific to NS1 with K d values of 1.62 ± 0.30 nM and 1.97 ± 0.27 nM, respectively, using a systematic evolution of ligand by exponential enrichment (SELEX) procedure. The selected aptamers were able to inhibit the interaction of NS1 with tripartite motif-containing protein 25 (TRIM25), and suppression of NS1 enabled retinoic acid inducible gene I (RIG-I) to be ubiquitinated regularly by TRIM25. Additional luciferase reporter assay and quantitative real-time PCR (RT-PCR) experiments demonstrated that suppression of NS1 by the selected aptamers induced IFN production. It is noted that viral replication was also inhibited through IFN induction in the presence of the selected aptamers. These results suggest that the isolated aptamers are strongly expected to be new therapeutic agents against influenza infection.


Asunto(s)
Aptámeros de Nucleótidos/metabolismo , Proteína 58 DEAD Box/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteínas no Estructurales Virales/metabolismo , Animales , Células HEK293 , Humanos , Interferones/metabolismo , Ratones , Unión Proteica , Células RAW 264.7 , Receptores Inmunológicos , Replicación Viral
9.
J Microbiol Biotechnol ; 29(12): 2006-2013, 2019 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-31581384

RESUMEN

The isolation of respiratory viruses, especially from clinical specimens, often shows poor efficiency with classical cell culture methods. The lack of suitable methods to generate virus particles inhibits the development of diagnostic assays, treatments, and vaccines. We compared three inoculation methods, classical cell culture, the addition of a JAK2 inhibitor AZD1480, and centrifugation-enhanced inoculation (CEI), to replicate human respiratory syncytial virus (HRSV) and human metapneumovirus (HMPV). In addition, a combined method using AZD1480 treatment and CEI was used on throat swabs to verify that this method could increase virus isolation efficiency from human clinical specimens. Both CEI and AZD1480 treatment increased HRSV and HMPV genome replication. Also, the combined method using CEI and AZD1480 treatment enhanced virus proliferation synergistically. The combined method is particularly suited for the isolation of interferon-sensitive or slowly growing viruses from human clinical specimens.


Asunto(s)
Centrifugación/métodos , Pneumovirus/aislamiento & purificación , Pirazoles/farmacología , Pirimidinas/farmacología , Cultivo de Virus/métodos , Humanos , Metapneumovirus/efectos de los fármacos , Metapneumovirus/genética , Metapneumovirus/crecimiento & desarrollo , Metapneumovirus/aislamiento & purificación , Pneumovirus/efectos de los fármacos , Pneumovirus/crecimiento & desarrollo , Virus Sincitial Respiratorio Humano/efectos de los fármacos , Virus Sincitial Respiratorio Humano/genética , Virus Sincitial Respiratorio Humano/crecimiento & desarrollo , Virus Sincitial Respiratorio Humano/aislamiento & purificación , Manejo de Especímenes , Replicación Viral
10.
Antibodies (Basel) ; 8(3)2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31544848

RESUMEN

Since its first report in the Middle East in 2012, the Middle East respiratory syndrome-coronavirus (MERS-CoV) has become a global concern due to the high morbidity and mortality of individuals infected with the virus. Although the majority of MERS-CoV cases have been reported in Saudi Arabia, the overall risk in areas outside the Middle East remains significant as inside Saudi Arabia. Additional pandemics of MERS-CoV are expected, and thus novel tools and reagents for therapy and diagnosis are urgently needed. Here, we used phage display to develop novel monoclonal antibodies (mAbs) that target MERS-CoV. A human Fab phage display library was panned against the S2 subunit of the MERS-CoV spike protein (MERS-S2P), yielding three unique Fabs (S2A3, S2A6, and S2D5). The Fabs had moderate apparent affinities (Half maximal effective concentration (EC50 = 123-421 nM) for MERS-S2P, showed no cross-reactivity to spike proteins from other CoVs, and were non-aggregating and thermostable (Tm = 61.5-80.4 °C). Reformatting the Fabs into IgGs (Immunoglobulin Gs) greatly increased their apparent affinities (KD = 0.17-1.2 nM), presumably due to the effects of avidity. These apparent affinities were notably higher than that of a previously reported anti-MERS-CoV S2 reference mAb (KD = 8.7 nM). Furthermore, two of the three mAbs (S2A3 and S2D5) bound only MERS-CoV (Erasmus Medical Center (EMC)) and not other CoVs, reflecting their high binding specificity. However, the mAbs lacked MERS-CoV neutralizing activity. Given their high affinity, specificity, and desirable stabilities, we anticipate that these anti-MERS-CoV mAbs would be suitable reagents for developing antibody-based diagnostics in laboratory or hospital settings for point-of-care testing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA