Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Proc Natl Acad Sci U S A ; 119(38): e2203593119, 2022 09 20.
Article En | MEDLINE | ID: mdl-36095213

Outer membrane porins in Gram-negative bacteria facilitate antibiotic influx. In Klebsiella pneumoniae, modifications in the porin OmpK36 are implicated in increasing resistance to carbapenems. An analysis of large K. pneumoniae genome collections, encompassing major healthcare-associated clones, revealed the recurrent emergence of a synonymous cytosine-to-thymine transition at position 25 (25c > t) in ompK36. We show that the 25c > t transition increases carbapenem resistance through depletion of OmpK36 from the outer membrane. The mutation attenuates K. pneumoniae in a murine pneumonia model, which accounts for its limited clonal expansion observed by phylogenetic analysis. However, in the context of carbapenem treatment, the 25c > t transition tips the balance toward treatment failure, thus accounting for its recurrent emergence. Mechanistically, the 25c > t transition mediates an intramolecular messenger RNA (mRNA) interaction between a uracil encoded by 25t and the first adenine within the Shine-Dalgarno sequence. This specific interaction leads to the formation of an RNA stem structure, which obscures the ribosomal binding site thus disrupting translation. While mutations reducing OmpK36 expression via transcriptional silencing are known, we uniquely demonstrate the repeated selection of a synonymous ompK36 mutation mediating translational suppression in response to antibiotic pressure.


Anti-Bacterial Agents , Bacterial Proteins , Carbapenems , Klebsiella pneumoniae , Porins , beta-Lactam Resistance , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/classification , Bacterial Proteins/genetics , Carbapenems/pharmacology , Carbapenems/therapeutic use , Disease Models, Animal , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Mice , Microbial Sensitivity Tests , Mutation , Phylogeny , Pneumonia, Bacterial/drug therapy , Pneumonia, Bacterial/microbiology , Porins/classification , Porins/genetics , RNA, Messenger/metabolism , beta-Lactam Resistance/genetics
2.
Nat Commun ; 13(1): 4503, 2022 08 03.
Article En | MEDLINE | ID: mdl-35922434

The COVID-19 pandemic is exacting an increasing toll worldwide, with new SARS-CoV-2 variants emerging that exhibit higher infectivity rates and that may partially evade vaccine and antibody immunity. Rapid deployment of non-invasive therapeutic avenues capable of preventing infection by all SARS-CoV-2 variants could complement current vaccination efforts and help turn the tide on the COVID-19 pandemic. Here, we describe a novel therapeutic strategy targeting the SARS-CoV-2 RNA using locked nucleic acid antisense oligonucleotides (LNA ASOs). We identify an LNA ASO binding to the 5' leader sequence of SARS-CoV-2 that disrupts a highly conserved stem-loop structure with nanomolar efficacy in preventing viral replication in human cells. Daily intranasal administration of this LNA ASO in the COVID-19 mouse model potently suppresses viral replication (>80-fold) in the lungs of infected mice. We find that the LNA ASO is efficacious in countering all SARS-CoV-2 "variants of concern" tested both in vitro and in vivo. Hence, inhaled LNA ASOs targeting SARS-CoV-2 represents a promising therapeutic approach to reduce or prevent transmission and decrease severity of COVID-19 in infected individuals. LNA ASOs are chemically stable and can be flexibly modified to target different viral RNA sequences and could be stockpiled for future coronavirus pandemics.


COVID-19 , SARS-CoV-2 , Administration, Intranasal , Animals , Humans , Mice , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/therapeutic use , Pandemics/prevention & control , RNA, Viral/genetics
3.
Nat Commun ; 13(1): 1128, 2022 03 02.
Article En | MEDLINE | ID: mdl-35236847

SARS-CoV-2 is a betacoronavirus with a single-stranded, positive-sense, 30-kilobase RNA genome responsible for the ongoing COVID-19 pandemic. Although population average structure models of the genome were recently reported, there is little experimental data on native structural ensembles, and most structures lack functional characterization. Here we report secondary structure heterogeneity of the entire SARS-CoV-2 genome in two lines of infected cells at single nucleotide resolution. Our results reveal alternative RNA conformations across the genome and at the critical frameshifting stimulation element (FSE) that are drastically different from prevailing population average models. Importantly, we find that this structural ensemble promotes frameshifting rates much higher than the canonical minimal FSE and similar to ribosome profiling studies. Our results highlight the value of studying RNA in its full length and cellular context. The genomic structures detailed here lay groundwork for coronavirus RNA biology and will guide the design of SARS-CoV-2 RNA-based therapeutics.


COVID-19/virology , RNA, Viral/chemistry , SARS-CoV-2/genetics , Frameshifting, Ribosomal , Genome, Viral , Humans , Nucleic Acid Conformation , RNA, Viral/genetics , RNA, Viral/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism
...