Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(12): e2301730, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37496078

RESUMEN

With ever-increasing efforts to design sorbent materials to capture carbon dioxide from flue gas and air, this perspective article is provided based on nearly a decade of collaboration across science, engineering, and industry partners. A key point learned is that a holistic view of the carbon capture problem is critical. While researchers can be inclined to value their own fields and associated metrics, often, key parameters are those that enable synergy between materials and processes. While the role of water in the chemisorption of CO2 is well-studied, in this perspective, it is hoped to highlight the often-overlooked but critical role of water in assessing the potential of a physical adsorbent for CO2 capture. This is a challenge that requires interdisciplinarity. As such, this document is written for a general audience rather than experts in any specific discipline.

2.
Artículo en Inglés | MEDLINE | ID: mdl-37913526

RESUMEN

In this study, we utilized an ultramicroporous metal-organic framework (MOF) named [Ni3(pzdc)2(ade)2(H2O)4]·2.18H2O (where H3pzdc represents pyrazole-3,5-dicarboxylic acid and ade represents adenine) for hydrogen (H2) adsorption. Upon activation, [Ni3(pzdc)2(ade)2] was obtained, and in situ carbon monoxide loading by transmission infrared spectroscopy revealed the generation of open Ni(II) sites. The MOF displayed a Brunauer-Emmett-Teller (BET) surface area of 160 m2/g and a pore size of 0.67 nm. Hydrogen adsorption measurements conducted on this MOF at 77 K showed a steep increase in uptake (up to 1.93 mmol/g at 0.04 bar) at low pressure, reaching a H2 uptake saturation at 2.11 mmol/g at ∼0.15 bar. The affinity of this MOF for H2 was determined to be 9.7 ± 1.0 kJ/mol. In situ H2 loading experiments supported by molecular simulations confirmed that H2 does not bind to the open Ni(II) sites of [Ni3(pzdc)2(ade)2], and the high affinity of the MOF for H2 is attributed to the interplay of pore size, shape, and functionality.

3.
J Chem Phys ; 157(15): 154702, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36272797

RESUMEN

The interfacial behavior of tetrabutylammonium bromide (TBAB) aqueous solutions in the absence of gas and the presence of methane and carbon dioxide gases is studied by molecular dynamics simulations. The aqueous TBAB phase, at concentrations similar to the solid semiclathrate hydrate (1:38 mol ratio), has a smaller interfacial tension and an increase in the gas molecules adsorbed at the interface compared to that in pure water. Both these factors may contribute to facilitating the uptake of the gases into the solid phase during the process of semiclathrate hydrate formation. At similar gas pressures, CO2 is adsorbed preferentially compared to CH4, giving it a higher surface density, due to the stronger intermolecular interactions of CO2 molecules of the solution at the interface. The increase in relative adsorption of CH4 at the solution surface compared to that in pure water surface is due to the hydrophobic interactions between the n-alkyl chains of the TBA+ cation and methane gas.

4.
ACS Appl Mater Interfaces ; 14(38): 43372-43386, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36121788

RESUMEN

Advancements in hypothetical metal-organic framework (hMOF) databases and construction tools have resulted in a rapidly expanding chemical design space for nanoporous materials. The bulk of these hypothetical structures are constructed using structural building units (SBUs) derived from experimental MOF structures, often collected from the CoRE-MOF database. Recent investigations into the state of these deposited experimental structures' chemical accuracy identified an array of common structural errors, including omitted protons, missing counterions, and disordered structures. These structural errors propagate into the SBUs mined from experimental MOFs, culminating in inaccurate hMOF structures possessing net charges or missing atoms which were not accounted for previously. This work demonstrates how manual investigation was applied to diagnose structural errors in SBUs obtained from several popular hMOF construction tools and databases. An analysis of the prevailing errors discovered during the examination process is provided along with representative cases to aid with error detection in future studies involving SBU extraction and hMOF construction. A novel repair protocol was established and employed to generate a library of SBUs that are hand-examined and labeled with enhanced detail (HEALED). This repaired library of SBUs contains 952 inorganic SBUs and 568 organic SBUs ideally suited for the generation of hypothetical frameworks that are chemically accurate and properly charge labeled. Additionally, case studies following the effects of SBU errors on electrostatic potential-fitted charges and GCMC-simulated gas adsorption predictions are presented to highlight the significance of using chemically accurate hMOF structures exclusively in all screening efforts going forward.

5.
Science ; 374(6574): 1464-1469, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34914501

RESUMEN

Metal-organic frameworks (MOFs) as solid sorbents for carbon dioxide (CO2) capture face the challenge of merging efficient capture with economical regeneration in a durable, scalable material. Zinc-based Calgary Framework 20 (CALF-20) physisorbs CO2 with high capacity but is also selective over water. Competitive separations on structured CALF-20 show not just preferential CO2 physisorption below 40% relative humidity but also suppression of water sorption by CO2, which was corroborated by computational modeling. CALF-20 has a low enthalpic regeneration penalty and shows durability to steam (>450,000 cycles) and wet acid gases. It can be prepared in one step, formed as composite materials, and its synthesis can be scaled to multikilogram batches.

6.
J Chem Phys ; 153(4): 044701, 2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32752701

RESUMEN

Molecular dynamics simulations were performed to study the interfacial behavior of the pure carbon dioxide-water system and a binary 40:60 mol. % gas mixture of (carbon dioxide + methane)-water at the temperatures of 275.15 K and 298.15 K and pressures near 4 MPa for CO2 and up to 10 MPa for methane. The simulations are used to study the dynamic equilibrium of the gases at the water-gas interface, to determine the z-density profiles for the gases and water, and calculate the interfacial tension γ under the different temperature/pressure conditions close to those of the formation of clathrate hydrates of these gases. At the same hydrostatic gas phase pressure, the CO2-water interface has a lower interfacial tension than the CH4-water interface. A greater number of CO2 molecules, as much as three times more than methane at the same pressure, were adsorbed at the interfacial layer, which reflects the stronger electrostatic quadrupolar and van der Waals interactions between CO2 and water molecules at the interface. The water surfaces are covered by less than a monolayer of gas even when the pressure of the system goes near the saturation pressure of CO2. The surface adsorbed molecules are in dynamic equilibrium with the bulk gas and with exchange between the gas and interface regions occurring repeatedly within the timescale of the simulations. The effects of the changes in the CO2-water interfacial tension with external temperature and pressure conditions on the formation of the clathrate hydrates and other CO2 capture and sequestration processes are discussed.

7.
Chemistry ; 26(55): 12544-12548, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32428326

RESUMEN

Molecular confinement plays a significant effect on trapped gas and solvent molecules. A fundamental understanding of gas adsorption within the porous confinement provides information necessary to design a material with improved selectivity. In this regard, metal-organic framework (MOF) adsorbents are ideal candidate materials to study confinement effects for weakly interacting gas molecules, such as noble gases. Among the noble gases, xenon (Xe) has practical applications in the medical, automotive and aerospace industries. In this Communication, we report an ultra-microporous nickel-isonicotinate MOF with exceptional Xe uptake and selectivity compared to all benchmark MOF and porous organic cage materials. The selectivity arises because of the near perfect fit of the atomic Xe inside the porous confinement. Notably, at low partial pressure, the Ni-MOF interacts very strongly with Xe compared to the closely related Krypton gas (Kr) and more polarizable CO2 . Further 129 Xe NMR suggests a broad isotropic chemical shift due to the reduced motion as a result of confinement.

8.
Environ Sci Technol ; 54(7): 4536-4544, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32091203

RESUMEN

Postcombustion CO2 capture and storage (CCS) is a key technological approach to reducing greenhouse gas emission while we transition to carbon-free energy production. However, current solvent-based CO2 capture processes are considered too energetically expensive for widespread deployment. Vacuum swing adsorption (VSA) is a low-energy CCS that has the potential for industrial implementation if the right sorbents can be found. Metal-organic framework (MOF) materials are often promoted as sorbents for low-energy CCS by highlighting select adsorption properties without a clear understanding of how they perform in real-world VSA processes. In this work, atomistic simulations have been fully integrated with a detailed VSA simulator, validated at the pilot scale, to screen 1632 experimentally characterized MOFs. A total of 482 materials were found to meet the 95% CO2 purity and 90% CO2 recovery targets (95/90-PRTs)-365 of which have parasitic energies below that of solvent-based capture (∼290 kWhe/MT CO2) with a low value of 217 kWhe/MT CO2. Machine learning models were developed using common adsorption metrics to predict a material's ability to meet the 95/90-PRT with an overall prediction accuracy of 91%. It was found that accurate parasitic energy and productivity estimates of a VSA process require full process simulations.


Asunto(s)
Dióxido de Carbono , Aprendizaje Automático , Adsorción , Vacio
9.
Nature ; 576(7786): 253-256, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31827290

RESUMEN

Limiting the increase of CO2 in the atmosphere is one of the largest challenges of our generation1. Because carbon capture and storage is one of the few viable technologies that can mitigate current CO2 emissions2, much effort is focused on developing solid adsorbents that can efficiently capture CO2 from flue gases emitted from anthropogenic sources3. One class of materials that has attracted considerable interest in this context is metal-organic frameworks (MOFs), in which the careful combination of organic ligands with metal-ion nodes can, in principle, give rise to innumerable structurally and chemically distinct nanoporous MOFs. However, many MOFs that are optimized for the separation of CO2 from nitrogen4-7 do not perform well when using realistic flue gas that contains water, because water competes with CO2 for the same adsorption sites and thereby causes the materials to lose their selectivity. Although flue gases can be dried, this renders the capture process prohibitively expensive8,9. Here we show that data mining of a computational screening library of over 300,000 MOFs can identify different classes of strong CO2-binding sites-which we term 'adsorbaphores'-that endow MOFs with CO2/N2 selectivity that persists in wet flue gases. We subsequently synthesized two water-stable MOFs containing the most hydrophobic adsorbaphore, and found that their carbon-capture performance is not affected by water and outperforms that of some commercial materials. Testing the performance of these MOFs in an industrial setting and consideration of the full capture process-including the targeted CO2 sink, such as geological storage or serving as a carbon source for the chemical industry-will be necessary to identify the optimal separation material.

10.
J Chem Phys ; 150(11): 114703, 2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30901995

RESUMEN

The presence of small hydrocarbons is known to reduce the interfacial tension of the gas-water interface, and this phenomenon can affect the formation of the clathrate hydrates of these gases. In this work, the interfacial behavior of the pure methane-, ethane-, and propane-water, and the ternary 90:7:3 mol. % gas mixture of (methane + ethane + propane)-water were studied with molecular dynamics simulations. The interfacial tension, γ, and z-density profiles for the gases and water from simulations of the gas-water systems were determined at the temperatures of 275.15 and 298.15 K, and pressures up to 10 MPa for methane and up to near the experimental saturation pressures of ethane and propane. The goal is to accurately calculate the interfacial tension for the hydrocarbon/water systems and to analyze the molecular behaviors at the interfaces which lead to the observed trends. At the same hydrostatic gas phase pressure, propane, ethane, and methane reduce the gas-water interfacial tension in that order. The local density of the gas molecules at the interface is enhanced relative to the bulk gas, and it was determined that about 13%-20%, 33%-40%, and 54%-59% of the gas molecules in the simulation congregated at the interfaces for the CH4-, C2H6-, and C3H8-water systems, respectively, at the different simulated hydrostatic pressure ranges. For all gases in the pressure range studied, a complete monolayer of gas had not formed at the water interface. Furthermore, a dynamic equilibrium with fast exchange between molecules at the interface and in the gas phase was observed. For the gas mixture, deviations were observed between total calculated interfacial tension, γmix, and the "ideal mixture" value, ∑xiγi,pure, calculated from the interfacial tensions of the pure gases, where xi is the mole fraction of each substance in the simulation. Some possible implications of the results on the mechanism of clathrate hydrate formation are discussed.

11.
ACS Appl Mater Interfaces ; 11(3): 3181-3188, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-30590927

RESUMEN

Cationic frameworks are an emerging class of exceptional solid adsorbents capable of encapsulating highly toxic and persistent anionic pollutants. The controlled generation of cationic frameworks, however, lags behind the abundant design strategies devised to control the structures and topologies of neutral frameworks. In this regard, we report a rational approach that allows the conversion of the synthetic approach toward constructing a neutral framework into one allowing for the synthesis of a cationic one without incurring any changes to the overall topology or the selected metal ion. We demonstrate that the replacement of a functional group on an organic linker that promotes a similar coordination mode, but bearing one less negative charge, can yield the systematic generation of cationic frameworks. Moreover, we confirm the cationic nature of the metal-organic frameworks through preliminary anion-exchange experiments and propose a method to retain permanent porosity in cationic frameworks through the use of strongly binding anions. Altogether, these results show great promise for the construction of tunable nanoporous frameworks capable of carrying out anion-exchange processes.

12.
Chem Commun (Camb) ; 54(100): 14104-14107, 2018 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-30500002

RESUMEN

We report a highly porous 3D metal-organic framework (MOF) that shows potential for coal mine methane (CMM) capture.

13.
J Chem Theory Comput ; 14(10): 5229-5237, 2018 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-30148628

RESUMEN

Understanding the performance of machine learning algorithms is essential for designing more accurate and efficient statistical models. It is not always possible to unravel the reasoning of neural networks. Here, we propose a method for calculating machine learning kernels in closed and analytic form by combining atomic property weighted radial distribution function (AP-RDF) descriptor with a Gaussian kernel. This allowed us to analyze and improve the performance of the Bag-of-Bonds descriptor when the bond type restriction is included in AP-RDF. The improvement is achieved for the prediction of molecular atomization energies (MAE = 1.7 kcal/mol for QM7 data set) and is due to the incorporation of a tensor product into the kernel, which captures the multidimensional representation of the AP-RDF. On the other hand, the numerical version of the AP-RDF is a constant size descriptor, making it more computationally efficient than Bag-of-Bonds. We have also discussed a connection between molecular quantum similarity and machine learning kernels with first-principles kinds of descriptors.

14.
Analyst ; 143(11): 2563-2573, 2018 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-29721573

RESUMEN

Infrared spectroscopy is a powerful non-destructive technique for the identification and quantification of organic molecules widely used in scientific studies. For many years, efforts have been made to adopt this technique for the in situ monitoring of reactions. From these efforts, polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) was developed three decades ago. Unfortunately, because of the complexity of data processing and interpretation, PM-IRRAS had been avoided in lieu of the single potential alteration infrared spectroscopy (SPAIRS) and subtractively normalized interfacial Fourier transform infrared (SNIFTIR). In this work, we present a new approach for PM-IRRAS data processing and presentation, which provides more insight into in situ and surface studies besides dramatically improving the S/N. In this new approach, we recommend three complementary methods of data treatment (eqn (7), (9) and (10)) as the new protocols for presenting PM-IRRAS data. These equations are robust in visualising the surface processes at the solid-liquid and solid-gas interphases. Eqn (7) contrasts the surface adsorbed species with respect to the isotropic background with or without the influence of the applied potential. Eqn (9) highlights the surface potential-driven changes between the sample and the reference spectra. Eqn (10) focuses on the bulk-phase (solution/gas and surface species) potential-driven changes between the sample and the reference spectra, and hence it can be used to track the production of species, which desorb from the surface upon their formation. Examples of ethanol electro-oxidation reaction are provided as a test system for in situ studies and PVP deposited on glassy carbon for thin-film studies to illustrate the utility of the new PM-IRRAS data handling protocol, which is poised to improve the understanding of the chemistry and physics of surface processes.

15.
Faraday Discuss ; 203: 61-77, 2017 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-28722076

RESUMEN

Clathrate hydrate phases of Cl2 and Br2 guest molecules have been known for about 200 years. The crystal structure of these phases was recently re-determined with high accuracy by single crystal X-ray diffraction. In these structures, the water oxygen-halogen atom distances are determined to be shorter than the sum of the van der Waals radii, which indicates the action of some type of non-covalent interaction between the dihalogens and water molecules. Given that in the hydrate phases both lone pairs of each water oxygen atom are engaged in hydrogen bonding with other water molecules of the lattice, the nature of the oxygen-halogen interactions may not be the standard halogen bonds characterized recently in the solid state materials and enzyme-substrate compounds. The nature of the halogen-water interactions for the Cl2 and Br2 molecules in two isolated clathrate hydrate cages has recently been studied with ab initio calculations and Natural Bond Order analysis (Ochoa-Resendiz et al. J. Chem. Phys. 2016, 145, 161104). Here we present the results of ab initio calculations and natural localized molecular orbital analysis for Cl2 and Br2 guests in all cage types observed in the cubic structure I and tetragonal structure I clathrate hydrates to characterize the orbital interactions between the dihalogen guests and water. Calculations with isolated cages and cages with one shell of coordinating molecules are considered. The computational analysis is used to understand the nature of the halogen bonding in these materials and to interpret the guest positions in the hydrate cages obtained from the X-ray crystal structures.

16.
Chem Sci ; 8(4): 3171-3177, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28626553

RESUMEN

Binding sites are at the heart of all host-guest systems, whether biological or chemical. When considering binding sites that form covalent bonds with the guest, we generally envision a single, highly specific binding motif. Through single-crystal X-ray crystallography, the dynamic binding of a guest that displays a variety of covalent binding motifs in a single site of adsorption is directly observed for the first time. The stepwise crystallographic visualization of the incorporation of I2 within a porous MOF is presented, wherein the preferred binding motifs throughout the uptake process are identified. The guest I2 molecules initially bind with terminal iodide atoms of the framework to form [I4]2- units. However, as the adsorption progresses, the I2 molecules are observed to form less energetically favorable I3- groups with the same framework iodide atoms, thereby allowing for more guest molecules to be chemisorbed. At near saturation, even more binding motifs are observed in the same pores, including both physisorbed and chemisorbed guest molecules. Herein, we present the successful identification of a unique set of host-guest interactions which will drive the improvement of high capacity iodine capture materials.

17.
J Chem Theory Comput ; 13(6): 2858-2869, 2017 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-28493682

RESUMEN

Periodic frameworks that possess a net charge, such as zeolites, are an important class of materials in wide use. For guest-host interactions to be simulated in these materials, partial atomic charges are often used. In this work, we investigate two methods for the generation of partial atomic charges in periodic systems having a net framework charge. We first examine the validity of generating REPEAT electrostatic potential fitted charges derived from periodic electronic structure calculations, where a constant background charge is added to neutralize the net charge on the framework. The constant background charge obviates the need to add neutralizing counterions, which may induce artifacts such as polarization in the infinite periodic system. The second method we explore is the split charge equilibration (SQE) method for the rapid generation of partial atomic charges. The original formulation of the SQE method cannot be applied to systems with a net charge. In this work, we reformulate the SQE method by transforming the split charges into an atomic charge basis that allows for non-neutral systems to be treated. The new SQE model, which we call SQEAB (for atomic basis), was validated with a series of tests using both charged and neutral metal organic frameworks and zeolites. It was shown that SQEAB gives equivalent results to those of the original SQE model for neutral systems. We then demonstrated that the SQEAB method is able to "capture" the chemical structure of a charged framework better than that of the charge equilibration model by comparing to REPEAT electrostatic potential fitted charges.

18.
J Am Chem Soc ; 139(5): 1734-1737, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28107782

RESUMEN

Metal-organic frameworks (MOFs) have attracted significant attention as solid sorbents in gas separation processes for low-energy postcombustion CO2 capture. The parasitic energy (PE) has been put forward as a holistic parameter that measures how energy efficient (and therefore cost-effective) the CO2 capture process will be using the material. In this work, we present a nickel isonicotinate based ultramicroporous MOF, 1 [Ni-(4PyC)2·DMF], that has the lowest PE for postcombustion CO2 capture reported to date. We calculate a PE of 655 kJ/kg CO2, which is lower than that of the best performing material previously reported, Mg-MOF-74. Further, 1 exhibits exceptional hydrolytic stability with the CO2 adsorption isotherm being unchanged following 7 days of steam-treatment (>85% RH) or 6 months of exposure to the atmosphere. The diffusion coefficient of CO2 in 1 is also 2 orders of magnitude higher than in zeolites currently used in industrial scrubbers. Breakthrough experiments show that 1 only loses 7% of its maximum CO2 capacity under humid conditions.

19.
Sci Rep ; 6: 26403, 2016 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-27216585

RESUMEN

Ice recrystallization is the main contributor to cell damage and death during the cryopreservation of cells and tissues. Over the past five years, many small carbohydrate-based molecules were identified as ice recrystallization inhibitors and several were shown to reduce cryoinjury during the cryopreservation of red blood cells (RBCs) and hematopoietic stems cells (HSCs). Unfortunately, clear structure-activity relationships have not been identified impeding the rational design of future compounds possessing ice recrystallization inhibition (IRI) activity. A set of 124 previously synthesized compounds with known IRI activities were used to calibrate 3D-QSAR classification models using GRid INdependent Descriptors (GRIND) derived from DFT level quantum mechanical calculations. Partial least squares (PLS) model was calibrated with 70% of the data set which successfully identified 80% of the IRI active compounds with a precision of 0.8. This model exhibited good performance in screening the remaining 30% of the data set with 70% of active additives successfully recovered with a precision of ~0.7 and specificity of 0.8. The model was further applied to screen a new library of aryl-alditol molecules which were then experimentally synthesized and tested with a success rate of 82%. Presented is the first computer-aided high-throughput experimental screening for novel IRI active compounds.

20.
Chemistry ; 22(23): 7711-5, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27061210

RESUMEN

Coordinatively unsaturated Fe(III) metal sites were successfully incorporated into the iconic MOF-5 framework. This new structure, Fe(III) -iMOF-5, is the first example of an interpenetrated MOF linked through intercalated metal ions. Structural characterization was performed with single-crystal and powder XRD, followed by extensive analysis by spectroscopic methods and solid-state NMR, which reveals the paramagnetic ion through its interaction with the framework. EPR and Mössbauer spectroscopy confirmed that the intercalated ions were indeed Fe(III) , whereas DFT calculations were employed to ascertain the unique pentacoordinate architecture around the Fe(III) ion. Interestingly, this is also the first crystallographic evidence of pentacoordinate Zn(II) within the MOF-5 SBU. This new MOF structure displays the potential for metal-site addition as a framework connector, thus creating further opportunity for the innovative development of new MOF materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA