Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 54
1.
Nat Commun ; 15(1): 2823, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38561349

Dysfunction in fast-spiking parvalbumin interneurons (PV-INs) may represent an early pathophysiological perturbation in Alzheimer's Disease (AD). Defining early proteomic alterations in PV-INs can provide key biological and translationally-relevant insights. We used cell-type-specific in-vivo biotinylation of proteins (CIBOP) coupled with mass spectrometry to obtain native-state PV-IN proteomes. PV-IN proteomic signatures include high metabolic and translational activity, with over-representation of AD-risk and cognitive resilience-related proteins. In bulk proteomes, PV-IN proteins were associated with cognitive decline in humans, and with progressive neuropathology in humans and the 5xFAD mouse model of Aß pathology. PV-IN CIBOP in early stages of Aß pathology revealed signatures of increased mitochondria and metabolism, synaptic and cytoskeletal disruption and decreased mTOR signaling, not apparent in whole-brain proteomes. Furthermore, we demonstrated pre-synaptic defects in PV-to-excitatory neurotransmission, validating our proteomic findings. Overall, in this study we present native-state proteomes of PV-INs, revealing molecular insights into their unique roles in cognitive resiliency and AD pathogenesis.


Alzheimer Disease , Mice , Humans , Animals , Alzheimer Disease/metabolism , Parvalbumins/metabolism , Proteomics , Proteome/metabolism , Interneurons/metabolism , Mice, Transgenic
2.
Biotechnol Prog ; : e3463, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38568030

Alzheimer's disease and other tauopathies are characterized by the misfolding and aggregation of the tau protein into oligomeric and fibrillar structures. Antibodies against tau play an increasingly important role in studying these neurodegenerative diseases and the generation of tools to diagnose and treat them. The development of antibodies that recognize tau protein aggregates, however, is hindered by complex immunization and antibody selection strategies and limitations to antigen presentation. Here, we have taken a facile approach to identify single-domain antibodies, or nanobodies, that bind to many forms of tau by screening a synthetic yeast surface display nanobody library against monomeric tau and creating multivalent versions of our lead nanobody, MT3.1, to increase its avidity for tau aggregates. We demonstrate that MT3.1 binds to tau monomer, oligomers, and fibrils, as well as pathogenic tau from a tauopathy mouse model, despite being identified through screens against monomeric tau. Through epitope mapping, we discovered binding epitopes of MT3.1 contain the key motif VQIXXK which drives tau aggregation. We show that our bivalent and tetravalent versions of MT3.1 have greatly improved binding ability to tau oligomers and fibrils compared to monovalent MT3.1. Our results demonstrate the utility of our nanobody screening and multivalent design approach in developing nanobodies that bind amyloidogenic protein aggregates. This approach can be extended to the generation of multivalent nanobodies that target other amyloid proteins and has the potential to advance the research and treatment of neurodegenerative diseases.

3.
Metabolites ; 14(3)2024 Feb 21.
Article En | MEDLINE | ID: mdl-38535293

Traumatic brain injury (TBI) is a significant source of disability in the United States and around the world and may lead to long-lasting cognitive deficits and a decreased quality of life for patients across injury severities. Following the primary injury phase, TBI is characterized by complex secondary cascades that involve altered homeostasis and metabolism, faulty signaling, neuroinflammation, and lipid dysfunction. The objectives of the present study were to (1) assess potential correlations between lipidome and cytokine changes after closed-head mild TBI (mTBI), and (2) examine the reproducibility of our acute lipidomic profiles following TBI. Cortices from 54 Sprague Dawley male and female rats were analyzed by ultra-high-performance liquid chromatography mass spectrometry (LC-MS) in both positive and negative ionization modes and multiplex cytokine analysis after single (smTBI) or repetitive (rmTBI) closed-head impacts, or sham conditions. Tissue age was a variable, given that two cohorts (n = 26 and n = 28) were initially run a year-and-a-half apart, creating inter-batch variations. We annotated the lipidome datasets using an in-house data dictionary based on exact masses of precursor and fragment ions and removed features with statistically significant differences between sham control batches. Our results indicate that lipids with high-fold change between injury groups moderately correlate with the cytokines eotaxin, IP-10, and TNF-α. Additionally, we show a significant decrease in the pro-inflammatory markers IL-1ß and IP-10, TNF-α, and RANTES in the rmTBI samples relative to the sham control. We discuss the major challenges in correlating high dimensional lipidomic data with functional cytokine profiles and the implications for understanding the biological significance of two related but disparate analysis modes in the study of TBI, an inherently heterogeneous neurological disorder.

4.
Sci Rep ; 14(1): 6940, 2024 03 23.
Article En | MEDLINE | ID: mdl-38521799

Whole-body physical exercise has been shown to promote retinal structure and function preservation in animal models of retinal degeneration. It is currently unknown how exercise modulates retinal inflammatory responses. In this study, we investigated cytokine alterations associated with retinal neuroprotection induced by voluntary running wheel exercise in a retinal degeneration mouse model of class B1 autosomal dominant retinitis pigmentosa, I307N Rho. I307N Rho mice undergo rod photoreceptor degeneration when exposed to bright light (induced). Our data show, active induced mice exhibited significant preservation of retinal and visual function compared to inactive induced mice after 4 weeks of exercise. Retinal cytokine expression revealed significant reductions of proinflammatory chemokines, keratinocyte-derived chemokine (KC) and interferon gamma inducible protein-10 (IP-10) expression in active groups compared to inactive groups. Through immunofluorescence, we found KC and IP-10 labeling localized to retinal vasculature marker, collagen IV. These data show that whole-body exercise lowers specific retinal cytokine expression associated with retinal vasculature. Future studies should determine whether suppression of inflammatory responses is requisite for exercise-induced retinal protection.


Retinal Degeneration , Retinitis Pigmentosa , Mice , Animals , Retinal Degeneration/metabolism , Chemokine CXCL10 , Rhodopsin/metabolism , Retinitis Pigmentosa/metabolism , Disease Models, Animal
5.
ACS Biomater Sci Eng ; 9(11): 6282-6292, 2023 11 13.
Article En | MEDLINE | ID: mdl-37906515

In order to scale up culture therapeutic cells, such as mesenchymal stromal cells (MSCs), culture in suspension bioreactors using microcarriers (µCs) is preferred. However, the impact of microcarrier type on the resulting MSC secretory activity has not been investigated. In this study, two poly(ethylene glycol) hydrogel formulations with different swelling ratios (named "stiffer" and "softer") were fabricated as µC substrates to culture MSCs and MSCs genetically modified to express the interleukin-1 receptor antagonist (IL-1Ra-MSCs). Changes in cell number, secretory and angiogenic activity, and changes in MAPK signaling were evaluated when cultured on hydrogel µCs, as well as on tissue culture plastic-based Synthemax µCs. We demonstrated that culture on stiffer µCs increased secretion of IL-1Ra compared to culture on Synthemax µCs by IL-1Ra-MSCs by 1.2- to 1.6-fold, as well as their in vitro angiogenic activity, compared to culture on Synthemax µCs, while culture on both stiffer and softer µCs altered the secretion of several other factors compared to culture on Synthemax µCs. Changes in angiogenic activity corresponded with increased gene expression and secretion of hepatocyte growth factor by MSCs cultured on softer µCs by 2.5- to 6-fold compared to MSCs cultured on Synthemax µCs. Quantification of phosphoprotein signaling with the MAPK pathway revealed broad reduction of pathway activation by IL-1Ra-MSCs cultured on both stiffer and softer µCs compared to Synthemax, where phosphorylated c-Jun, ATF2, and MEK1 were reduced specifically on softer µCs. Overall, this study showed that µC surfaces can influence the secretory activity of genetically modified MSCs and identified associated changes in MAPK pathway signaling, which is a known central regulator of cytokine secretion.


Interleukin 1 Receptor Antagonist Protein , Mesenchymal Stem Cells , Interleukin 1 Receptor Antagonist Protein/genetics , Interleukin 1 Receptor Antagonist Protein/pharmacology , Interleukin 1 Receptor Antagonist Protein/metabolism , Mesenchymal Stem Cells/metabolism , Cell Culture Techniques/methods , Biocompatible Materials , Hydrogels/pharmacology , Hydrogels/metabolism , Polyethylene Glycols/pharmacology , Polyethylene Glycols/metabolism
6.
bioRxiv ; 2023 Oct 10.
Article En | MEDLINE | ID: mdl-37873448

Treatments for congenital and acquired craniofacial (CF) bone abnormalities are limited and expensive. Current reconstructive methods include surgical correction of injuries, short-term bone stabilization, and long-term use of bone grafting solutions, including implantation of (i) allografts which are prone to implant failure or infection, (ii) autografts which are limited in supply. Current bone regenerative approaches have consistently relied on BMP-2 application with or without addition of stem cells. BMP2 treatment can lead to severe bony overgrowth or uncontrolled inflammation, which can accelerate further bone loss. Bone marrow-derived mesenchymal stem cell-based treatments, which do not have the side effects of BMP2, are not currently FDA approved, and are time and resource intensive. There is a critical need for novel bone regenerative therapies to treat CF bone loss that have minimal side effects, are easily available, and are affordable. In this study we investigated novel bone regenerative therapies downstream of JAGGED1 (JAG1). We previously demonstrated that JAG1 induces murine cranial neural crest (CNC) cells towards osteoblast commitment via a NOTCH non-canonical pathway involving JAK2-STAT5 (1) and that JAG1 delivery with CNC cells elicits bone regeneration in vivo. In this study, we hypothesized that delivery of JAG1 and induction of its downstream NOTCH non-canonical signaling in pediatric human osteoblasts constitute an effective bone regenerative treatment in an in vivo murine bone loss model of a critically-sized cranial defect. Using this CF defect model in vivo, we delivered JAG1 with pediatric human bone-derived osteoblast-like (HBO) cells to demonstrate the osteo-inductive properties of JAG1 in human cells and in vitro we utilized the HBO cells to identify the downstream non-canonical JAG1 signaling intermediates as effective bone regenerative treatments. In vitro, we identified an important mechanism by which JAG1 induces pediatric osteoblast commitment and bone formation involving the phosphorylation of p70 S6K. This discovery enables potential new treatment avenues involving the delivery of tethered JAG1 and the downstream activators of p70 S6K as powerful bone regenerative therapies in pediatric CF bone loss.

7.
Sci Adv ; 9(32): eadf5672, 2023 08 09.
Article En | MEDLINE | ID: mdl-37556553

Microglia transform in response to changes in sensory or neural activity, such as sensory deprivation. However, little is known about how specific frequencies of neural activity, or brain rhythms, affect microglia and cytokine signaling. Using visual noninvasive flickering sensory stimulation (flicker) to induce electrical neural activity at 40 hertz, within the gamma band, and 20 hertz, within the beta band, we found that these brain rhythms differentially affect microglial morphology and cytokine expression in healthy animals. Flicker induced expression of certain cytokines independently of microglia, including interleukin-10 and macrophage colony-stimulating factor. We hypothesized that nuclear factor κB (NF-κB) plays a causal role in frequency-specific cytokine and microglial responses because this pathway is activated by synaptic activity and regulates cytokines. After flicker, phospho-NF-κB colabeled with neurons more than microglia. Inhibition of NF-κB signaling down-regulated flicker-induced cytokine expression and attenuated flicker-induced changes in microglial morphology. These results reveal a mechanism through which brain rhythms affect brain function by altering microglial morphology and cytokines via NF-κB.


Brain , Cytokines , Microglia , NF-kappa B , Animals , Brain/metabolism , Cytokines/metabolism , Microglia/metabolism , NF-kappa B/metabolism , Signal Transduction
8.
bioRxiv ; 2023 Jun 14.
Article En | MEDLINE | ID: mdl-37397993

Repetitive mild traumatic brain injuries (rmTBI) sustained within a window of vulnerability can result in long term cognitive deficits, depression, and eventual neurodegeneration associated with tau pathology, amyloid beta (Aß) plaques, gliosis, and neuronal and functional loss. However, we have limited understanding of how successive injuries acutely affect the brain to result in these devastating long-term consequences. In the current study, we addressed the question of how repeated injuries affect the brain in the acute phase of injury (<24hr) by exposing the 3xTg-AD mouse model of tau and Aß pathology to successive (1x, 3x, 5x) once-daily weight drop closed-head injuries and quantifying immune markers, pathological markers, and transcriptional profiles at 30min, 4hr, and 24hr after each injury. We used young adult mice (2-4 months old) to model the effects of rmTBI relevant to young adult athletes, and in the absence of significant tau and Aß pathology. Importantly, we identified pronounced sexual dimorphism, with females eliciting more differentially expressed proteins after injury compared to males. Specifically, females showed: 1) a single injury caused a decrease in neuron-enriched genes inversely correlated with inflammatory protein expression as well as an increase in AD-related genes within 24hr, 2) each injury significantly increased expression of a group of cortical cytokines (IL-1α, IL-1ß, IL-2, IL-9, IL-13, IL-17, KC) and MAPK phospho-proteins (phospho-Atf2, phospho-Mek1), several of which were co-labeled with neurons and correlated with phospho-tau, and 3) repetitive injury caused increased expression of genes associated with astrocyte reactivity and immune function. Collectively our data suggest that neurons respond to a single injury within 24h, while other cell types including astrocytes transition to inflammatory phenotypes within days of repetitive injury.

9.
bioRxiv ; 2023 May 17.
Article En | MEDLINE | ID: mdl-37292756

One of the earliest pathophysiological perturbations in Alzheimer's Disease (AD) may arise from dysfunction of fast-spiking parvalbumin (PV) interneurons (PV-INs). Defining early protein-level (proteomic) alterations in PV-INs can provide key biological and translationally relevant insights. Here, we use cell-type-specific in vivo biotinylation of proteins (CIBOP) coupled with mass spectrometry to obtain native-state proteomes of PV interneurons. PV-INs exhibited proteomic signatures of high metabolic, mitochondrial, and translational activity, with over-representation of causally linked AD genetic risk factors. Analyses of bulk brain proteomes indicated strong correlations between PV-IN proteins with cognitive decline in humans, and with progressive neuropathology in humans and mouse models of Aß pathology. Furthermore, PV-IN-specific proteomes revealed unique signatures of increased mitochondrial and metabolic proteins, but decreased synaptic and mTOR signaling proteins in response to early Aß pathology. PV-specific changes were not apparent in whole-brain proteomes. These findings showcase the first native state PV-IN proteomes in mammalian brain, revealing a molecular basis for their unique vulnerabilities in AD.

10.
Mol Cell Proteomics ; 22(6): 100546, 2023 Jun.
Article En | MEDLINE | ID: mdl-37061046

Different brain cell types play distinct roles in brain development and disease. Molecular characterization of cell-specific mechanisms using cell type-specific approaches at the protein (proteomic) level can provide biological and therapeutic insights. To overcome the barriers of conventional isolation-based methods for cell type-specific proteomics, in vivo proteomic labeling with proximity-dependent biotinylation of cytosolic proteins using biotin ligase TurboID, coupled with mass spectrometry (MS) of labeled proteins, emerged as a powerful strategy for cell type-specific proteomics in the native state of cells without the need for cellular isolation. To complement in vivo proximity labeling approaches, in vitro studies are needed to ensure that cellular proteomes using the TurboID approach are representative of the whole-cell proteome and capture cellular responses to stimuli without disruption of cellular processes. To address this, we generated murine neuroblastoma (N2A) and microglial (BV2) lines stably expressing cytosolic TurboID to biotinylate the cellular proteome for downstream purification and analysis using MS. TurboID-mediated biotinylation captured 59% of BV2 and 65% of N2A proteomes under homeostatic conditions. TurboID labeled endolysosome, translation, vesicle, and signaling proteins in BV2 microglia and synaptic, neuron projection, and microtubule proteins in N2A neurons. TurboID expression and biotinylation minimally impacted homeostatic cellular proteomes of BV2 and N2A cells and did not affect lipopolysaccharide-mediated cytokine production or resting cellular respiration in BV2 cells. MS analysis of the microglial biotin-labeled proteins captured the impact of lipopolysaccharide treatment (>500 differentially abundant proteins) including increased canonical proinflammatory proteins (Il1a, Irg1, and Oasl1) and decreased anti-inflammatory proteins (Arg1 and Mgl2).


Microglia , Proteome , Animals , Mice , Microglia/metabolism , Proteome/metabolism , Biotin/metabolism , Proteomics/methods , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Cell Line , Neurons/metabolism , Biotinylation
11.
Microcirculation ; 30(2-3): e12792, 2023 04.
Article En | MEDLINE | ID: mdl-36369987

BACKGROUND: Dysfunction of the lymphatic system following injury, disease, or cancer treatment can lead to lymphedema, a debilitating condition with no cure. Despite the various physical therapy and surgical options available, most treatments are palliative and fail to address the underlying lymphatic vascular insufficiency driving lymphedema progression. Stem cell therapy provides a promising alternative in the treatment of various chronic diseases with a wide range of therapeutic effects that reduce inflammation, fibrosis, and oxidative stress, while promoting lymphatic vessel (LV) regeneration. Specifically, stem cell transplantation is suggested to promote LV restoration, rebuild lymphatic circulation, and thus potentially be utilized towards an effective lymphedema treatment. In addition to stem cells, studies have proposed the administration of vascular endothelial growth factor C (VEGFC) to promote lymphangiogenesis and decrease swelling in lymphedema. AIMS: Here, we seek to combine the benefits of stem cell therapy, which provides a cellular therapeutic approach that can respond to the tissue environment, and VEGFC administration to restore lymphatic drainage. MATERIALS & METHODS: Specifically, we engineered mesenchymal stem cells (MSCs) to overexpress VEGFC using a lentiviral vector (hVEGFC MSC) and investigated their therapeutic efficacy in improving LV function and tissue swelling using near infrared (NIR) imaging, and lymphatic regeneration in a single LV ligation mouse tail lymphedema model. RESULTS: First, we showed that overexpression of VEGFC using lentiviral transduction led to an increase in VEGFC protein synthesis in vitro. Then, we demonstrated hVEGFC MSC administration post-injury significantly increased the lymphatic contraction frequency 14-, 21-, and 28-days post-surgery compared to the control animals (MSC administration) in vivo, while also reducing tail swelling 28-days post-surgery compared to controls. CONCLUSION: Our results suggest a therapeutic potential of hVEGFC MSC in alleviating the lymphatic dysfunction observed during lymphedema progression after secondary injury and could provide a promising approach to enhancing autologous cell therapy for treating lymphedema.


Lymphatic Vessels , Lymphedema , Mesenchymal Stem Cells , Animals , Mice , Lymphangiogenesis , Lymphatic Vessels/physiology , Lymphedema/therapy , Mesenchymal Stem Cells/metabolism , Mice, Inbred BALB C , Vascular Endothelial Growth Factor C/metabolism , Vascular Endothelial Growth Factor C/therapeutic use , Lentivirus/genetics
12.
J Vis Exp ; (183)2022 05 27.
Article En | MEDLINE | ID: mdl-35695529

Mild traumatic brain injuries (mTBIs) are a significant public health problem. Repeated exposure to mTBI can lead to cumulative, long-lasting functional deficits. Numerous studies by our group and others have shown that mTBI stimulates cytokine expression and activates microglia, decreases cerebral blood flow and metabolism, and impairs cerebrovascular reactivity. Moreover, several works have reported an association between derangements in these neuroinflammatory and hemodynamic markers and cognitive impairments. Herein we detail methods to characterize the neuroinflammatory and hemodynamic tissue response to mTBI in mice. Specifically, we describe how to perform a weight-drop model of mTBI, how to longitudinally measure cerebral blood flow using a non-invasive optical technique called diffuse correlation spectroscopy, and how to perform a Luminex multiplexed immunoassay on brain tissue samples to quantify cytokines and immunomodulatory phospho-proteins (e.g., within the MAPK and NFκB pathways) that respond to and regulate activity of microglia and other neural immune cells. Finally, we detail how to integrate these data using a multivariate systems analysis approach to understand the relationships between all of these variables. Understanding the relationships between these physiologic and molecular variables will ultimately enable us to identify mechanisms responsible for mTBI.


Brain Concussion , Brain Injuries, Traumatic , Animals , Brain/metabolism , Cytokines/metabolism , Disease Models, Animal , Hemodynamics , Mice , Systems Analysis
13.
Mol Neurodegener ; 17(1): 33, 2022 05 07.
Article En | MEDLINE | ID: mdl-35526014

BACKGROUND: The BIN1 locus contains the second-most significant genetic risk factor for late-onset Alzheimer's disease. BIN1 undergoes alternate splicing to generate tissue- and cell-type-specific BIN1 isoforms, which regulate membrane dynamics in a range of crucial cellular processes. Whilst the expression of BIN1 in the brain has been characterized in neurons and oligodendrocytes in detail, information regarding microglial BIN1 expression is mainly limited to large-scale transcriptomic and proteomic data. Notably, BIN1 protein expression and its functional roles in microglia, a cell type most relevant to Alzheimer's disease, have not been examined in depth. METHODS: Microglial BIN1 expression was analyzed by immunostaining mouse and human brain, as well as by immunoblot and RT-PCR assays of isolated microglia or human iPSC-derived microglial cells. Bin1 expression was ablated by siRNA knockdown in primary microglial cultures in vitro and Cre-lox mediated conditional deletion in adult mouse brain microglia in vivo. Regulation of neuroinflammatory microglial signatures by BIN1 in vitro and in vivo was characterized using NanoString gene panels and flow cytometry methods. The transcriptome data was explored by in silico pathway analysis and validated by complementary molecular approaches. RESULTS: Here, we characterized microglial BIN1 expression in vitro and in vivo and ascertained microglia expressed BIN1 isoforms. By silencing Bin1 expression in primary microglial cultures, we demonstrate that BIN1 regulates the activation of proinflammatory and disease-associated responses in microglia as measured by gene expression and cytokine production. Our transcriptomic profiling revealed key homeostatic and lipopolysaccharide (LPS)-induced inflammatory response pathways, as well as transcription factors PU.1 and IRF1 that are regulated by BIN1. Microglia-specific Bin1 conditional knockout in vivo revealed novel roles of BIN1 in regulating the expression of disease-associated genes while counteracting CX3CR1 signaling. The consensus from in vitro and in vivo findings showed that loss of Bin1 impaired the ability of microglia to mount type 1 interferon responses to proinflammatory challenge, particularly the upregulation of a critical type 1 immune response gene, Ifitm3. CONCLUSIONS: Our convergent findings provide novel insights into microglial BIN1 function and demonstrate an essential role of microglial BIN1 in regulating brain inflammatory response and microglial phenotypic changes. Moreover, for the first time, our study shows a regulatory relationship between Bin1 and Ifitm3, two Alzheimer's disease-related genes in microglia. The requirement for BIN1 to regulate Ifitm3 upregulation during inflammation has important implications for inflammatory responses during the pathogenesis and progression of many neurodegenerative diseases.


Adaptor Proteins, Signal Transducing , Alzheimer Disease , Microglia , Nuclear Proteins , Tumor Suppressor Proteins , Adaptor Proteins, Signal Transducing/genetics , Alzheimer Disease/metabolism , Animals , Humans , Inflammation/metabolism , Lipopolysaccharides , Mice , Microglia/metabolism , Nerve Tissue Proteins/genetics , Nuclear Proteins/genetics , Proteomics , Transcriptome , Tumor Suppressor Proteins/genetics
14.
Nat Commun ; 13(1): 2927, 2022 05 25.
Article En | MEDLINE | ID: mdl-35614064

Proteomic profiling of brain cell types using isolation-based strategies pose limitations in resolving cellular phenotypes representative of their native state. We describe a mouse line for cell type-specific expression of biotin ligase TurboID, for in vivo biotinylation of proteins. Using adenoviral and transgenic approaches to label neurons, we show robust protein biotinylation in neuronal soma and axons throughout the brain, allowing quantitation of over 2000 neuron-derived proteins spanning synaptic proteins, transporters, ion channels and disease-relevant druggable targets. Next, we contrast Camk2a-neuron and Aldh1l1-astrocyte proteomes and identify brain region-specific proteomic differences within both cell types, some of which might potentially underlie the selective vulnerability to neurological diseases. Leveraging the cellular specificity of proteomic labeling, we apply an antibody-based approach to uncover differences in neuron and astrocyte-derived signaling phospho-proteins and cytokines. This approach will facilitate the characterization of cell-type specific proteomes in a diverse number of tissues under both physiological and pathological states.


Biotin , Proteomics , Animals , Astrocytes/metabolism , Biotin/metabolism , Biotinylation , Brain/metabolism , Mice , Neurons/metabolism , Proteome/metabolism
15.
Neurol Genet ; 8(2): e662, 2022 Apr.
Article En | MEDLINE | ID: mdl-35425852

Background and Objectives: Mucolipidosis type IV (MLIV) is an ultra-rare lysosomal disorder initially described as a static neurodevelopmental condition. However, patient caregivers frequently report progressive muscular hypertonicity and functional decline. We evaluated a cohort of patients with MLIV to determine whether neurologic disability correlates with age. Methods: We performed a cross-sectional, observational study of 26 patients with MLIV in the United States and Israel ranging in age from 2 to 40 years. Medical history was obtained from caregivers, and patients underwent a full neurologic examination. The Brief Assessment of Motor Function (BAMF), Gross Motor Function Classification System, and modified Ashworth scales were applied. Caregivers identified developmental skills on the Oregon Project for Visually Impaired and Blind Children checklist that their child had lost the ability to perform. Results: Three patients were clinically classified as mildly affected and the remaining 23 patients as typical, severely affected cases. Timing of first symptom onset ranged from 1.5 months to 8 years of age (median 7.25 months). Across typical patients, modified Ashworth scores demonstrated a positive age dependence illustrating worsening spasticity across the lifespan. Signs of extrapyramidal motor dysfunction were also qualitatively observed. In parallel, gross and fine motor function assessed with the BAMF and Gross Motor Function Classification System scales declined across age. All typical patients had restricted tongue mobility and lacked rotary jaw movement when chewing, but BAMF scores for deglutition declined only in the oldest patients. In contrast, scores for articulation were low in all patients and did not correlate with age. Finally, loss of developmental skills frequently occurred in early adolescence. Discussion: This cross-sectional natural history study of MLIV demonstrates worse motor function in older patients. These data support a neurodegenerative component of MLIV that manifests as developmental regression in the second decade of life. Whether the emergence of functional decline results from the cumulative, nonlinear interactions of steadily progressive neurodegenerative processes or reflects an inflection from impaired CNS development to degeneration is uncertain. However, understanding the relationship between CNS pathology and clinical course of disease will be imperative to guiding future interventional trials and optimizing patient care.

16.
Cells ; 11(3)2022 02 04.
Article En | MEDLINE | ID: mdl-35159355

BACKGROUND: Mucolipidosis IV (MLIV) is an autosomal recessive pediatric disease that leads to motor and cognitive deficits and loss of vision. It is caused by a loss of function of the lysosomal channel transient receptor potential mucolipin-1 and is associated with an early pro-inflammatory brain phenotype, including increased cytokine expression. The goal of the current study was to determine whether blood cytokines are linked to motor dysfunction in patients with MLIV and reflect brain inflammatory changes observed in an MLIV mouse model. METHODS: To determine the relationship between blood cytokines and motor function, we collected plasma from MLIV patients and parental controls concomitantly with assessment of motor function using the Brief Assessment of Motor Function and Modified Ashworth scales. We then compared these profiles with cytokine profiles in brain and plasma samples collected from the Mcoln1-/- mouse model of MLIV. RESULTS: We found that MLIV patients had prominently increased cytokine levels compared to familial controls and identified profiles of cytokines correlated with motor dysfunction, including IFN-γ, IFN-α2, and IP-10. We found that IP-10 was a key differentiating factor separating MLIV cases from controls based on data from human plasma, mouse plasma, and mouse brain. CONCLUSIONS: Our data indicate that MLIV is characterized by increased blood cytokines, which are strongly related to underlying neurological and functional deficits in MLIV patients. Moreover, our data identify the interferon pro-inflammatory axis in both human and mouse signatures, suggesting that interferon signaling is an important aspect of MLIV pathology.


Mucolipidoses , Transient Receptor Potential Channels , Animals , Chemokine CXCL10/metabolism , Cytokines/metabolism , Disease Models, Animal , Humans , Interferons/metabolism , Mice , Mucolipidoses/genetics , Mucolipidoses/metabolism , Mucolipidoses/pathology , Transient Receptor Potential Channels/metabolism
17.
Neurobiol Dis ; 166: 105655, 2022 05.
Article En | MEDLINE | ID: mdl-35143967

The phenotypic transformation of astrocytes in Alzheimer's disease (AD) is still not well understood. Recent analyses based on single-nucleus RNA sequencing of postmortem Alzheimer's disease (AD) samples are limited by the low number of sequenced astrocytes, small cohort sizes, and low number of differentially expressed genes detected. To optimize the detection of astrocytic genes, we employed a novel strategy consisting of the localization of pre-determined astrocyte and neuronal gene clusters in publicly available whole-brain transcriptomes. Specifically, we used cortical transcriptomes from 766 individuals, including cognitively normal subjects (Controls), and people diagnosed with mild cognitive impairment (MCI) or dementia due to AD. Samples came from three independent cohorts organized by the Mount Sinai Hospital, the Mayo Clinic, and the Religious Order Study/Memory and Aging Project (ROSMAP). Astrocyte- and neuron-specific gene clusters were generated from human brain cell-type specific RNAseq data using hierarchical clustering and cell-type enrichment scoring. Genes from each cluster were manually annotated according to cell-type specific functional Categories. Gene Set Variation Analysis (GSVA) and Principal Component Analysis (PCA) were used to establish changes in these functional categories among clinical cohorts. We highlight three novel findings of the study. First, individuals with the same clinical diagnosis were molecularly heterogeneous. Particularly in the Mayo Clinic and ROSMAP cohorts, over 50% of Controls presented down-regulation of genes encoding synaptic proteins typical of AD, whereas 30% of patients diagnosed with dementia due to AD presented Control-like transcriptomic profiles. Second, down-regulation of neuronal genes related to synaptic proteins coincided, in astrocytes, with up-regulation of genes related to perisynaptic astrocytic processes (PAP) and down-regulation of genes encoding endolysosomal and mitochondrial proteins. Third, down-regulation of astrocytic mitochondrial genes inversely correlated with the disease stages defined by Braak and CERAD scoring. Finally, we interpreted these changes as maladaptive or adaptive from the point of view of astrocyte biology in a model of the phenotypical transformation of astrocytes in AD. The main prediction is that early malfunction of the astrocytic endolysosomal system, associated with progressive mitochondrial dysfunction, contribute to Alzheimer's disease. If this prediction is correct, therapies preventing organelle dysfunction in astrocytes may be beneficial in preclinical and clinical AD.


Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/metabolism , Astrocytes/metabolism , Cognitive Dysfunction/complications , Gene Expression Profiling , Humans , Organelles/metabolism , Transcriptome
18.
Adv Mater ; 34(10): e2108084, 2022 Mar.
Article En | MEDLINE | ID: mdl-34989049

Immunotherapy has emerged as one of the most powerful anti-cancer therapies but is stymied by the limits of existing preclinical models with respect to disease latency and reproducibility. Additionally, the influence of differing immune microenvironments within tumors observed clinically and associated with immunotherapeutic resistance cannot be tuned to facilitate drug testing workflows without changing model system or laborious genetic approaches. To address this testing platform gap in the immune oncology drug development pipeline, the authors deploy engineered biomaterials as scaffolds to increase tumor formation rate, decrease disease latency, and diminish variability of immune infiltrates into tumors formed from murine mammary carcinoma cell lines implanted into syngeneic mice. By altering synthetic gel formulations that reshape infiltrating immune cells within the tumor, responsiveness of the same tumor model to varying classes of cancer immunotherapies, including in situ vaccination with a molecular adjuvant and immune checkpoint blockade, diverge. These results demonstrate the significant role the local immune microenvironment plays in immunotherapeutic response. These engineered tumor immune microenvironments therefore improve upon the limitations of current breast tumor models used for immune oncology drug screening to enable immunotherapeutic testing relevant to the variability in tumor immune microenvironments underlying immunotherapeutic resistance seen in human patients.


Immunotherapy , Neoplasms , Animals , Humans , Immunologic Factors/therapeutic use , Mice , Neoplasms/therapy , Reproducibility of Results , Tumor Microenvironment
19.
Acta Biomater ; 141: 315-332, 2022 03 15.
Article En | MEDLINE | ID: mdl-34979327

Mesenchymal stromal cells (MSCs) have shown promise as osteoarthritis (OA) treatments; however, effective translation has been limited by high variability and heterogeneity of MSCs, suboptimal delivery strategies, and poor understanding of critical quality and potency attributes. Furthermore, most pre-clinical studies of MSC therapeutics for OA have focused on delaying OA development and not on treating established OA, which brings added clinical relevance. Thus, the objective of the current study was to assess the effects of sodium alginate microencapsulation on human MSC (hMSC) secretion of immunomodulatory cytokines in an OA microenvironment and therapeutic efficacy in treating established OA. A Medial Meniscal Transection (MMT) pre-clinical model of OA was implemented. Three weeks post-surgery, after OA was established, intra-articular injections of encapsulated hMSCs or nonencapsulated hMSCs were administered. Six weeks post-surgery, microstructural changes in the knee joint were quantified using microCT. Encapsulated hMSCs reduced articular cartilage degeneration and subchondral bone remodeling. A multiplexed immunoassay panel was used to profile the in vitro secretome of hMSCs in response to IL-1ß. Nonencapsulated hMSCs showed an indiscriminate increase in all cytokines in response to IL-1ß while encapsulated hMSCs showed a targeted secretory response with increased expression of pro-inflammatory (IL-1ß, IL-6, IL-7, IL-8), anti-inflammatory (IL-1RA), and chemotactic (G-CSF, MDC, IP10) cytokines. These data show that sodium alginate microencapsulation can modulate hMSC paracrine signaling and enhance the therapeutic efficacy of the hMSCs in treating established OA. This cytokine profile provides a foundation for the identification of key factors affecting the overall potency of hMSC therapeutics for OA. STATEMENT OF SIGNIFICANCE: While there has been considerable interest in material based MSC encapsulation for treatment of OA, there are critical gaps in our translational understanding of these biomaterial-based technologies for OA. More specifically, previous studies have several important limitations: (1) they have been largely focused on preventing OA development, which limits their translational utility and (2) little prior work has been done to delineate potential routes/mechanisms by which material encapsulation alters MSC therapeutic action. In our manuscript, we aimed to fill these gaps in knowledge by testing the hypotheses that: (1) hMSC encapsulation can attenuate established disease progression, which is a more clinically relevant scenario and (2) hMSC encapsulation significantly changes the secreted paracrine factors from hMSCs.


Cartilage, Articular , Mesenchymal Stem Cells , Osteoarthritis , Alginates , Cartilage, Articular/metabolism , Cytokines/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Osteoarthritis/metabolism , Osteoarthritis/therapy , Paracrine Communication
20.
Connect Tissue Res ; 63(1): 16-27, 2022 01.
Article En | MEDLINE | ID: mdl-33820456

Purpose: Mechanical loading of bone defects through rehabilitation is a promising approach to stimulate repair and reduce nonunion risk; however, little is known about how therapeutic mechanical stimuli modulate early-stage repair before mineralized bone formation. The objective of this study was to investigate the early effects of osteogenic loading on cytokine expression and angiogenesis during the first 3 weeks of BMP-2 mediated segmental bone defect repair.Materials and Methods: A rat model of BMP-2 mediated bone defect repair was subjected to an osteogenic mechanical loading protocol using ambulatory rehabilitation and a compliant, load-sharing fixator with an integrated implantable strain sensor. The effect of fixator load-sharing on local tissue strain, angiogenesis, and cytokine expression was evaluated.Results: Using sensor readings for local measurements of boundary conditions, finite element simulations showed strain became amplified in remaining soft tissue regions between 1 and 3 weeks (Week 3: load-sharing: -1.89 ± 0.35% and load-shielded: -1.38 ± 0.35% vs. Week 1: load-sharing: -1.54 ± 0.17%; load-shielded: -0.76 ± 0.06%). Multivariate analysis of cytokine arrays revealed that load-sharing significantly altered expression profiles in the defect tissue at 2 weeks compared to load-shielded defects. Specifically, loading reduced VEGF (p = 0.052) and increased CXCL5 (LIX) levels. Subsequently, vascular volume in loaded defects was reduced relative to load-shielded defects but similar to intact bone at 3 weeks. Endochondral bone repair was also observed histologically in loaded defects at 3 weeks.Conclusions: Together, these results demonstrate that moderate ambulatory strains previously shown to stimulate bone regeneration significantly alter early angiogenic and cytokine signaling and may promote endochondral ossification.


Bone Morphogenetic Protein 2 , Osteogenesis , Animals , Bone Regeneration/physiology , Osteogenesis/physiology , Prostheses and Implants , Rats
...