Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Sci Rep ; 14(1): 218, 2024 01 02.
Article En | MEDLINE | ID: mdl-38168761

Notch signaling is universally conserved in metazoans where it is important for a wide variety of both normal and abnormal physiology. All four mammalian Notch receptors are activated by a conserved mechanism that releases Notch intracellular domains (NICDs) from the plasma membrane to translocate to the nucleus. Once there, NICDs interact through highly conserved ankyrin domains to form head-to-head homodimers on Notch sensitive promoters and stimulate transcription. Due to the highly conserved nature of these Notch ankyrin domains in all four mammalian Notch proteins, we hypothesized that NICDs may also engage in heterodimerization. Our results reveal the presence of two NICD dimerization states that can both engage in homo and heterodimerization. Using a Co-IP approach, we show that all NICD's can form non-transcriptionally active dimers and that the N4ICD appears to perform this function better than the other NICDs. Using a combination of ChIP analysis and transcriptional reporter assays, we also demonstrate the formation of transcriptionally active heterodimers that form on DNA. In particular, we demonstrate heterodimerization between the N2ICD and N4ICD and show that this heterodimer pair appears to exhibit differential activity on various Notch sensitive promoters. These results illustrate a new diversification of Notch signaling mechanisms which will help us better understand basic Notch function.


Ankyrins , Receptors, Notch , Animals , Ankyrins/genetics , Receptors, Notch/genetics , Receptors, Notch/metabolism , Promoter Regions, Genetic , Mammals/metabolism
2.
Res Sq ; 2023 Jul 26.
Article En | MEDLINE | ID: mdl-37546896

Notch signaling is universally conserved in metazoans where it is important for a wide variety of both normal and abnormal physiology. All four mammalian Notch receptors are activated by a conserved mechanism that releases Notch intracellular domains (NICDs) from the plasma membrane to translocate to the nucleus. Once there, NICDs interact through highly conserved ankyrin domains to form head-to-head homodimers on Notch sensitive promoters and stimulate transcription. Due to the highly conserved nature of these Notch ankyrin domains in all four mammalian Notch proteins, we hypothesized that NICDs may also engage in heterodimerization. Our results reveal the presence of two NICD dimerization states that can both engage in homo and heterodimerization. Using a Co-IP approach, we show that all NICD's can form non-transcriptionally active dimers and that the N4ICD appears to perform this function better than the other NICDs. Using a combination of ChIP analysis and transcriptional reporter assays, we also demonstrate the formation of transcriptionally active heterodimers that form on DNA. In particular, we demonstrate heterodimerization between the N2ICD and N4ICD and show that this heterodimer pair appears to exhibit differential activity on various Notch sensitive promoters. These results illustrate a new diversification of Notch signaling mechanisms which will help us better understand basic Notch function.

...