Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Signal ; 11(560)2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30538174

RESUMEN

Increased abundance of GRK2 [G protein-coupled receptor (GPCR) kinase 2] is associated with poor cardiac function in heart failure patients. In animal models, GRK2 contributes to the pathogenesis of heart failure after ischemia-reperfusion (IR) injury. In addition to its role in down-regulating activated GPCRs, GRK2 also localizes to mitochondria both basally and post-IR injury, where it regulates cellular metabolism. We previously showed that phosphorylation of GRK2 at Ser670 is essential for the translocation of GRK2 to the mitochondria of cardiomyocytes post-IR injury in vitro and that this localization promotes cell death. Here, we showed that mice with a S670A knock-in mutation in endogenous GRK2 showed reduced cardiomyocyte death and better cardiac function post-IR injury. Cultured GRK2-S670A knock-in cardiomyocytes subjected to IR in vitro showed enhanced glucose-mediated mitochondrial respiratory function that was partially due to maintenance of pyruvate dehydrogenase activity and improved glucose oxidation. Thus, we propose that mitochondrial GRK2 plays a detrimental role in cardiac glucose oxidation post-injury.


Asunto(s)
Apoptosis , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Glucosa/química , Insuficiencia Cardíaca/prevención & control , Isquemia/fisiopatología , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Alanina/química , Alanina/genética , Alanina/metabolismo , Animales , Quinasa 2 del Receptor Acoplado a Proteína-G/genética , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Masculino , Ratones , Mitocondrias/patología , Miocitos Cardíacos/patología , Oxidación-Reducción , Consumo de Oxígeno , Fosforilación , Mutación Puntual , Serina/química , Serina/genética , Serina/metabolismo , Transducción de Señal
2.
Circ Res ; 119(10): 1116-1127, 2016 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-27601479

RESUMEN

RATIONALE: G protein-coupled receptor kinase 2 (GRK2) is an important molecule upregulated after myocardial injury and during heart failure. Myocyte-specific GRK2 loss before and after myocardial ischemic injury improves cardiac function and remodeling. The cardiac fibroblast plays an important role in the repair and remodeling events after cardiac ischemia; the importance of GRK2 in these events has not been investigated. OBJECTIVE: The aim of this study is to elucidate the in vivo implications of deleting GRK2 in the cardiac fibroblast after ischemia/reperfusion injury. METHODS AND RESULTS: We demonstrate, using Tamoxifen inducible, fibroblast-specific GRK2 knockout mice, that GRK2 loss confers a protective advantage over control mice after myocardial ischemia/reperfusion injury. Fibroblast GRK2 knockout mice presented with decreased infarct size and preserved cardiac function 24 hours post ischemia/reperfusion as demonstrated by increased ejection fraction (59.1±1.8% versus 48.7±1.2% in controls; P<0.01). GRK2 fibroblast knockout mice also had decreased fibrosis and fibrotic gene expression. Importantly, these protective effects correlated with decreased infiltration of neutrophils to the ischemia site and decreased levels of tumor necrosis factor-α expression and secretion in GRK2 fibroblast knockout mice. CONCLUSIONS: These novel data showing the benefits of inhibiting GRK2 in the cardiac fibroblast adds to previously published data showing the advantage of GRK2 ablation and reinforces the therapeutic potential of GRK2 inhibition in the heart after myocardial ischemia.


Asunto(s)
Fibroblastos/enzimología , Quinasa 2 del Receptor Acoplado a Proteína-G/deficiencia , Corazón/fisiopatología , Contracción Miocárdica/fisiología , Isquemia Miocárdica/fisiopatología , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/enzimología , Animales , Animales Recién Nacidos , AMP Cíclico/metabolismo , Fibrosis , Quinasa 2 del Receptor Acoplado a Proteína-G/genética , Quinasa 2 del Receptor Acoplado a Proteína-G/fisiología , Regulación de la Expresión Génica , Ratones , Ratones Noqueados , Isquemia Miocárdica/genética , Daño por Reperfusión Miocárdica/genética , Miocardio/patología , FN-kappa B/metabolismo , Infiltración Neutrófila , ARN Interferente Pequeño/genética , Ratas , Sistemas de Mensajero Secundario/efectos de los fármacos , Volumen Sistólico , Transducción Genética , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
3.
J Biol Chem ; 291(42): 21913-21924, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27566547

RESUMEN

GRK2, a G protein-coupled receptor kinase, plays a critical role in cardiac physiology. Adrenergic receptors are the primary target for GRK2 activity in the heart; phosphorylation by GRK2 leads to desensitization of these receptors. As such, levels of GRK2 activity in the heart directly correlate with cardiac contractile function. Furthermore, increased expression of GRK2 after cardiac insult exacerbates injury and speeds progression to heart failure. Despite the importance of this kinase in both the physiology and pathophysiology of the heart, relatively little is known about the role of GRK2 in skeletal muscle function and disease. In this study we generated a novel skeletal muscle-specific GRK2 knock-out (KO) mouse (MLC-Cre:GRK2fl/fl) to gain a better understanding of the role of GRK2 in skeletal muscle physiology. In isolated muscle mechanics testing, GRK2 ablation caused a significant decrease in the specific force of contraction of the fast-twitch extensor digitorum longus muscle yet had no effect on the slow-twitch soleus muscle. Despite these effects in isolated muscle, exercise capacity was not altered in MLC-Cre:GRK2fl/fl mice compared with wild-type controls. Skeletal muscle hypertrophy stimulated by clenbuterol, a ß2-adrenergic receptor (ß2AR) agonist, was significantly enhanced in MLC-Cre:GRK2fl/fl mice; mechanistically, this seems to be due to increased clenbuterol-stimulated pro-hypertrophic Akt signaling in the GRK2 KO skeletal muscle. In summary, our study provides the first insights into the role of GRK2 in skeletal muscle physiology and points to a role for GRK2 as a modulator of contractile properties in skeletal muscle as well as ß2AR-induced hypertrophy.


Asunto(s)
Clenbuterol/efectos adversos , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Contracción Muscular/efectos de los fármacos , Músculo Esquelético/enzimología , Enfermedades Musculares/enzimología , Transducción de Señal/efectos de los fármacos , Animales , Clenbuterol/farmacocinética , Quinasa 2 del Receptor Acoplado a Proteína-G/genética , Hipertrofia/inducido químicamente , Hipertrofia/enzimología , Hipertrofia/genética , Hipertrofia/patología , Ratones , Ratones Noqueados , Contracción Muscular/genética , Músculo Esquelético/patología , Enfermedades Musculares/inducido químicamente , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Transducción de Señal/genética
4.
Circ Res ; 114(10): 1661-70, 2014 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-24812353

RESUMEN

Heart failure (HF) causes a tremendous burden on the worldwide healthcare system, affecting >23 million people. There are many cardiovascular disorders that contribute to the development of HF and multiple risk factors that accelerate its occurrence, but regardless of its underlying cause, HF is characterized by a marked decrease in myocardial contractility and loss of pump function. One biomarker molecule consistently shown to be upregulated in human HF and several animal models is G protein-coupled receptor kinase-2 (GRK2), a kinase originally discovered to be involved in G protein-coupled receptor desensitization, especially ß-adrenergic receptors. Higher levels of GRK2 can impair ß-adrenergic receptor-mediated inotropic reserve and its inhibition, or molecular reduction has shown to improve pump function in several animal models including a preclinical pig model of HF. Recently, nonclassical roles for GRK2 in cardiovascular disease have been described, including negative regulation of insulin signaling, a role in myocyte cell survival and apoptotic signaling, and it has been shown to be localized in/on mitochondria. These new roles of GRK2 suggest that GRK2 may be a nodal link in the myocyte, influencing both cardiac contractile function and cell metabolism and survival and contributing to HF independent of its canonical role in G protein-coupled receptor desensitization. In this review, classical and nonclassical roles for GRK2 will be discussed, focusing on recently discovered roles for GRK2 in cardiomyocyte metabolism and the effects that these roles may have on myocardial contractile function and HF development.


Asunto(s)
Quinasa 2 del Receptor Acoplado a Proteína-G/fisiología , Insuficiencia Cardíaca/enzimología , Insuficiencia Cardíaca/fisiopatología , Contracción Miocárdica/fisiología , Miocitos Cardíacos/enzimología , Animales , Biomarcadores/metabolismo , Quinasa 2 del Receptor Acoplado a Proteína-G/biosíntesis , Insuficiencia Cardíaca/patología , Humanos , Miocitos Cardíacos/patología , Miocitos Cardíacos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...