Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38370667

RESUMEN

The enzymatic oxidation of arachidonic acid is proposed to yield trihydroxytetraene species (termed lipoxins) that resolve inflammation via ligand activation of the formyl peptide receptor, FPR2. While cell and murine models activate signaling responses to synthetic lipoxins, primarily 5S,6R,15S-trihydroxy-7E,9E,11Z,13E-eicosatetraenoic acid (lipoxin A4, LXA4), there are expanding concerns about the biological formation, detection and signaling mechanisms ascribed to LXA4 and related di- and tri-hydroxy ω-6 and ω-3 fatty acids. Herein, the generation and actions of LXA4 and its primary 15-oxo metabolite were assessed in control, LPS-activated and arachidonic acid supplemented RAW 264.7 macrophages. Despite protein expression of all enzymes required for LXA4 synthesis, both LXA4 and its 15-oxo-LXA4 metabolite were undetectable. Moreover, synthetic LXA4 and the membrane permeable 15-oxo-LXA4 methyl ester that is rapidly de-esterified to 15-oxo-LXA4, displayed no ligand activity for the putative LXA4 receptor FPR2, as opposed to the FPR2 ligand WKYMVm. Alternatively, 15-oxo-LXA4, an electrophilic α,ß-unsaturated ketone, alkylates nucleophilic amino acids such as cysteine to modulate redox-sensitive transcriptional regulatory protein and enzyme function. 15-oxo-LXA4 activated nuclear factor (erythroid related factor 2)-like 2 (Nrf2)-regulated gene expression of anti-inflammatory and repair genes and inhibited nuclear factor (NF)-κB-regulated pro-inflammatory mediator expression. LXA4 did not impact these macrophage anti-inflammatory and repair responses. In summary, these data show an absence of macrophage LXA4 formation and receptor-mediated signaling actions. Rather, if LXA4 were present in sufficient concentrations, this, and other more abundant mono- and poly-hydroxylated unsaturated fatty acids can be readily oxidized to electrophilic α,ß-unsaturated ketone products that modulate the redox-sensitive cysteine proteome via G-protein coupled receptor-independent mechanisms.

2.
Food Chem ; 437(Pt 1): 137767, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37879157

RESUMEN

Nitrated fatty acids are important anti-inflammatory and protective lipids formed in the gastric compartment, with conjugated linoleic acid (rumenic acid, RA, 9Z,11E-18:2) being the primary substrate for lipid nitration. The recently reported identification of nitrated rumelenic acid (NO2-RLA) in human urine has led to hypothesize that rumelenic acid (RLA, 9Z,11E,15Z-18:3) from dairy fat is responsible for the formation of NO2-RLA. To evaluate the source and mechanism of NO2-RLA formation, 15N labeled standards of NO2-RLA were synthesized and characterized. Afterward, milk fat with different RA and RLA levels was administered to mice in the presence of nitrite, and the appearance of nitrated fatty acids in plasma and urine followed. We confirmed the formation of NO2-RLA and defined the main metabolites in plasma, urine, and tissues. In conclusion, RLA obtained from dairy products is the main substrate for forming this novel electrophilic lipid reported to be present in human urine.


Asunto(s)
Ácidos Linoleicos Conjugados , Nitratos , Ratones , Humanos , Animales , Nitratos/química , Nitritos/metabolismo , Dióxido de Nitrógeno , Ácidos Grasos/química , Productos Lácteos , Ácidos Linolénicos
3.
Redox Biol ; 66: 102856, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37633047

RESUMEN

Nitro fatty acids (NO2-FAs) are endogenously generated lipid signaling mediators from metabolic and inflammatory reactions between conjugated diene fatty acids and nitric oxide or nitrite-derived reactive species. NO2-FAs undergo reversible Michael addition with hyperreactive protein cysteine thiolates to induce posttranslational protein modifications that can impact protein function. Herein, we report a novel mechanism of action of natural and non-natural nitroalkenes structurally similar to (E) 10-nitro-octadec-9-enoic acid (CP-6), recently de-risked by preclinical Investigational New Drug-enabling studies and Phase 1 and Phase 2 clinical trials and found to induce DNA damage in a TNBC xenograft by inhibiting homologous-recombination (HR)-mediated repair of DNA double-strand breaks (DSB). CP-6 specifically targets Cys319, essential in RAD51-controlled HR-mediated DNA DSB repair in cells. A nitroalkene library screen identified two structurally different nitroalkenes, a non-natural fatty acid [(E) 8-nitro-nonadec-7-enoic acid (CP-8)] and a dicarboxylate ester [dimethyl (E)nitro-oct-4-enedioate (CP-23)] superior to CP-6 in TNBC cells killing, synergism with three different inhibitors of the poly ADP-ribose polymerase (PARP) and γ-IR. CP-8 and CP-23 effectively inhibited γ-IR-induced RAD51 foci formation and HR in a GFP-reported assay but did not affect benign human epithelial cells or cell cycle phases. In vivo, CP-8 and CP-23's efficacies diverged as only CP-8 showed promising anticancer activities alone and combined with the PARP inhibitor talazoparib in an HR-proficient TNBC mouse model. As preliminary preclinical toxicology analysis also suggests CP-8 as safe, our data endorse CP-8 as a novel anticancer molecule for treating cancers sensitive to homologous recombination-mediated DNA repair inhibitors.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Animales , Ratones , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Dióxido de Nitrógeno , Recombinación Homóloga , Apoptosis , Alquenos , ADN , Recombinasa Rad51
4.
bioRxiv ; 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37645906

RESUMEN

Nitro fatty acids (NO 2 -FAs) are endogenously generated lipid signaling mediators from metabolic and inflammatory reactions between conjugated diene fatty acids and nitric oxide or nitrite-derived reactive species. NO 2 -FAs undergo reversible Michael addition with hyperreactive protein cysteine thiolates to induce posttranslational protein modifications that can impact protein function. Herein, we report a novel mechanism of action of natural and non-natural nitroalkenes structurally similar to ( E ) 10-nitro-octadec-9-enoic acid (CP-6), recently de-risked by preclinical Investigational New Drug-enabling studies and Phase 1 and Phase 2 clinical trials and found to induce DNA damage in a TNBC xenograft by inhibiting homologous-recombination (HR)-mediated repair of DNA double-strand breaks (DSB). CP-6 specifically targets Cys319, essential in RAD51-controlled HR-mediated DNA DSB repair in cells. A nitroalkene library screen identified two structurally different nitroalkenes, a non-natural fatty acid [( E ) 8-nitro- nonadec-7-enoic acid (CP-8)] and a dicarboxylate ester [dimethyl ( E )nitro-oct-4-enedioate (CP- 23)] superior to CP-6 in TNBC cells killing, synergism with three different inhibitors of the poly ADP-ribose polymerase (PARP) and γ-IR. CP-8 and CP-23 effectively inhibited γ-IR-induced RAD51 foci formation and HR in a GFP-reported assay but did not affect benign human epithelial cells or cell cycle phases. In vivo, CP-8 and CP-23's efficacies diverged as only CP-8 showed promising anticancer activities alone and combined with the PARP inhibitor talazoparib in an HR-proficient TNBC mouse model. As preliminary preclinical toxicology analysis also suggests CP-8 as safe, our data endorse CP-8 as a novel anticancer molecule for treating cancers sensitive to homologous recombination-mediated DNA repair inhibitors.

5.
Sci Adv ; 8(26): eabm9138, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35767602

RESUMEN

The up-regulation of kynurenine metabolism induces immunomodulatory responses via incompletely understood mechanisms. We report that increases in cellular and systemic kynurenine levels yield the electrophilic derivative kynurenine-carboxyketoalkene (Kyn-CKA), as evidenced by the accumulation of thiol conjugates and saturated metabolites. Kyn-CKA induces NFE2 like bZIP transcription factor 2- and aryl hydrocarbon receptor-regulated genes and inhibits nuclear factor κB- and NLR family pyrin domain containing 3-dependent proinflammatory signaling. Sickle cell disease (SCD) is a hereditary hemolytic condition characterized by basal inflammation and recurrent vaso-occlusive crises. Both transgenic SCD mice and patients with SCD exhibit increased kynurenine and Kyn-CKA metabolite levels. Plasma hemin and kynurenine concentrations are positively correlated, indicating that Kyn-CKA synthesis in SCD is up-regulated during pathogenic vascular stress. Administration of Kyn-CKA abrogated pulmonary microvasculature occlusion in SCD mice, an important factor in lung injury development. These findings demonstrate that the up-regulation of kynurenine synthesis and its metabolism to Kyn-CKA is an adaptive response that attenuates inflammation and protects tissues.

6.
Redox Biol ; 41: 101913, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33819836

RESUMEN

Organic nitrate esters, long-recognized therapies for cardiovascular disorders, have not been detected biologically. We characterize in rat stomach unsaturated fatty acid nitration reactions that proceed by generation of nitro-nitrate intermediates (NO2-ONO2-FA) via oxygen and nitrite dependent reactions. NO2-ONO2-lipids represent ∼70% of all nitrated lipids in the stomach and they decay in vitro at neutral or basic pH by the loss of the nitrate ester group (-ONO2) from the carbon backbone upon deprotonation of the α-carbon (pKa ∼7), yielding nitrate, nitrite, nitrosative species, and an electrophilic fatty acid nitroalkene product (NO2-FA). Of note, NO2-FA are anti-inflammatory and tissue-protective signaling mediators, which are undergoing Phase II trials for the treatment of kidney and pulmonary diseases. The decay of NO2-ONO2-FA occurs during intestinal transit and absorption, leading to the formation of NO2-FA that were subsequently detected in circulating plasma triglycerides. These observations provide new insight into unsaturated fatty acid nitration mechanisms, identify nitro-nitrate ester-containing lipids as intermediates in the formation of both secondary nitrogen oxides and electrophilic fatty acid nitroalkenes, and expand the scope of endogenous products stemming from metabolic reactions of nitrogen oxides.


Asunto(s)
Ácidos Grasos , Nitratos , Animales , Ésteres , Nitrocompuestos , Óxidos de Nitrógeno , Ratas
7.
J Biol Chem ; 294(2): 397-404, 2019 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-30478172

RESUMEN

Homologous recombination (HR)-directed DNA double-strand break (DSB) repair enables template-directed DNA repair to maintain genomic stability. RAD51 recombinase (RAD51) is a critical component of HR and facilitates DNA strand exchange in DSB repair. We report here that treating triple-negative breast cancer (TNBC) cells with the fatty acid nitroalkene 10-nitro-octadec-9-enoic acid (OA-NO2) in combination with the antineoplastic DNA-damaging agents doxorubicin, cisplatin, olaparib, and γ-irradiation (IR) enhances the antiproliferative effects of these agents. OA-NO2 inhibited IR-induced RAD51 foci formation and enhanced H2A histone family member X (H2AX) phosphorylation in TNBC cells. Analyses of fluorescent DSB reporter activity with both static-flow cytometry and kinetic live-cell studies enabling temporal resolution of recombination revealed that OA-NO2 inhibits HR and not nonhomologous end joining (NHEJ). OA-NO2 alkylated Cys-319 in RAD51, and this alkylation depended on the Michael acceptor properties of OA-NO2 because nonnitrated and saturated nonelectrophilic analogs of OA-NO2, octadecanoic acid and 10-nitro-octadecanoic acid, did not react with Cys-319. Of note, OA-NO2 alkylation of RAD51 inhibited its binding to ssDNA. RAD51 Cys-319 resides within the SH3-binding site of ABL proto-oncogene 1, nonreceptor tyrosine kinase (ABL1), so we investigated the effect of OA-NO2-mediated Cys-319 alkylation on ABL1 binding and found that OA-NO2 inhibits RAD51-ABL1 complex formation both in vitro and in cell-based immunoprecipitation assays. The inhibition of the RAD51-ABL1 complex also suppressed downstream RAD51 Tyr-315 phosphorylation. In conclusion, RAD51 Cys-319 is a functionally significant site for adduction of soft electrophiles such as OA-NO2 and suggests further investigation of lipid electrophile-based combinational therapies for TNBC.


Asunto(s)
Antineoplásicos/administración & dosificación , Daño del ADN/efectos de los fármacos , Ácidos Grasos/administración & dosificación , Recombinasa Rad51/metabolismo , Neoplasias de la Mama Triple Negativas/enzimología , Neoplasias de la Mama Triple Negativas/fisiopatología , Alquilación , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Cisplatino/administración & dosificación , Reparación del ADN , Doxorrubicina/administración & dosificación , Quimioterapia Combinada , Ácidos Grasos/química , Humanos , Unión Proteica/efectos de los fármacos , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-abl/genética , Proteínas Proto-Oncogénicas c-abl/metabolismo , Recombinasa Rad51/química , Recombinasa Rad51/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo
8.
J Lipid Res ; 60(2): 388-399, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30545956

RESUMEN

Electrophilic nitro-fatty acids [NO2-FAs (fatty acid nitroalkenes)] showed beneficial signaling actions in preclinical studies and safety in phase 1 clinical trials. A detailed description of the pharmacokinetics (PK) of NO2-FAs is complicated by the capability of electrophilic fatty acids to alkylate thiols reversibly and become esterified in various complex lipids, and the instability of the nitroalkene moiety during enzymatic and base hydrolysis. Herein, we report the mechanism and kinetics of absorption, metabolism, and distribution of the endogenously detectable and prototypical NO2-FA, 10-nitro-oleic acid (10-NO2-OA), in dogs after oral administration. Supported by HPLC-high-resolution-MS/MS analysis of synthetic and plasma-derived 10-NO2-OA-containing triacylglycerides (TAGs), we show that a key mechanism of NO2-FA distribution is an initial esterification into complex lipids. Quantitative analysis of plasma free and esterified lipid fractions confirmed time-dependent preferential incorporation of 10-NO2-OA into TAGs when compared with its principal metabolite, 10-nitro-stearic acid. Finally, new isomers of 10-NO2-OA were identified in vivo, and their electrophilic reactivity and metabolism characterized. Overall, we reveal that NO2-FAs display unique PK, with the principal mechanism of tissue distribution involving complex lipid esterification, which serves to shield the electrophilic character of this mediator from plasma and hepatic inactivation and thus permits efficient distribution to target organs.


Asunto(s)
Alquenos/química , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos , Nitrocompuestos/química , Animales , Transporte Biológico , Perros , Transporte de Electrón , Esterificación , Ácidos Grasos/sangre , Ácidos Grasos/farmacocinética , Concentración de Iones de Hidrógeno , Isomerismo , Masculino , Distribución Tisular
9.
Redox Biol ; 15: 522-531, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29413964

RESUMEN

Conjugated linoleic acid (CLA) is a prime substrate for intra-gastric nitration giving rise to the formation of nitro-conjugated linoleic acid (NO2-CLA). Herein, NO2-CLA generation is demonstrated within the context of acute inflammatory responses both in vitro and in vivo. Macrophage activation resulted in dose- and time-dependent CLA nitration and also in the production of secondary electrophilic and non-electrophilic derivatives. Both exogenous NO2-CLA as well as that generated in situ, attenuated NF-κB-dependent gene expression, decreased pro-inflammatory cytokine production and up-regulated Nrf2-regulated proteins. Importantly, both CLA nitration and the corresponding downstream anti-inflammatory actions of NO2-CLA were recapitulated in a mouse peritonitis model where NO2-CLA administration decreased pro-inflammatory cytokines and inhibited leukocyte recruitment. Taken together, our results demonstrate that the formation of NO2-CLA has the potential to function as an adaptive response capable of not only modulating inflammation amplitude but also protecting neighboring tissues via the expression of Nrf2-dependent genes.


Asunto(s)
Inmunoconjugados/metabolismo , Inflamación/metabolismo , Ácidos Linoleicos Conjugados/metabolismo , Óxido Nítrico/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Inmunoconjugados/inmunología , Inflamación/inducido químicamente , Inflamación/inmunología , Inflamación/patología , Ácidos Linoleicos Conjugados/inmunología , Ácidos Linoleicos Conjugados/farmacología , Ratones , FN-kappa B/metabolismo , Óxido Nítrico/química , Óxido Nítrico/inmunología , Transducción de Señal
10.
Tetrahedron Lett ; 59(39): 3524-3527, 2018 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-31379396

RESUMEN

15-oxo-Lipoxin A4 (15-oxo- LXA4) has been identified as a natural metabolite of the fatty acid signaling mediator Lipoxin A4. Herein, we report a total synthesis of the methyl ester of 15-oxo-LXA4 to be used in investigations of potential electrophilic bioactivity of this metabolite. The methyl ester of 15-oxo-LXA4 was synthesized in a convergent 15 step (9 steps longest linear) sequence starting from 1-octyn-3-ol and 2-deoxy-D-ribose with Sonogashira and Suzuki cross-couplings of a MIDA boronate as key steps.

11.
J Biol Chem ; 293(4): 1120-1137, 2018 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-29158255

RESUMEN

Triple-negative breast cancer (TNBC) comprises ∼20% of all breast cancers and is the most aggressive mammary cancer subtype. Devoid of the estrogen and progesterone receptors, along with the receptor tyrosine kinase ERB2 (HER2), that define most mammary cancers, there are no targeted therapies for patients with TNBC. This, combined with a high metastatic rate and a lower 5-year survival rate than for other breast cancer phenotypes, means there is significant unmet need for new therapeutic strategies. Herein, the anti-neoplastic effects of the electrophilic fatty acid nitroalkene derivative, 10-nitro-octadec-9-enoic acid (nitro-oleic acid, NO2-OA), were investigated in multiple preclinical models of TNBC. NO2-OA reduced TNBC cell growth and viability in vitro, attenuated TNFα-induced TNBC cell migration and invasion, and inhibited the tumor growth of MDA-MB-231 TNBC cell xenografts in the mammary fat pads of female nude mice. The up-regulation of these aggressive tumor cell growth, migration, and invasion phenotypes is mediated in part by the constitutive activation of pro-inflammatory nuclear factor κB (NF-κB) signaling in TNBC. NO2-OA inhibited TNFα-induced NF-κB transcriptional activity in human TNBC cells and suppressed downstream NF-κB target gene expression, including the metastasis-related proteins intercellular adhesion molecule-1 and urokinase-type plasminogen activator. The mechanisms accounting for NF-κB signaling inhibition by NO2-OA in TNBC cells were multifaceted, as NO2-OA (a) inhibited the inhibitor of NF-κB subunit kinase ß phosphorylation and downstream inhibitor of NF-κB degradation, (b) alkylated the NF-κB RelA protein to prevent DNA binding, and (c) promoted RelA polyubiquitination and proteasomal degradation. Comparisons with non-tumorigenic human breast epithelial MCF-10A and MCF7 cells revealed that NO2-OA more selectively inhibited TNBC function. This was attributed to more facile mechanisms for maintaining redox homeostasis in normal breast epithelium, including a more favorable thiol/disulfide balance, greater extents of multidrug resistance protein-1 (MRP1) expression, and greater MRP1-mediated efflux of NO2-OA-glutathione conjugates. These observations reveal that electrophilic fatty acid nitroalkenes react with more alkylation-sensitive targets in TNBC cells to inhibit growth and viability.


Asunto(s)
Movimiento Celular , Ácidos Grasos/metabolismo , Transducción de Señal , Neoplasias de la Mama Triple Negativas/metabolismo , Animales , Supervivencia Celular , Ácidos Grasos/genética , Femenino , Humanos , Células MCF-7 , Ratones , Ratones Desnudos , Invasividad Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
12.
Free Radic Biol Med ; 104: 10-19, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28063941

RESUMEN

Many diseases accompanied by chronic inflammation are connected with dysregulated activation of macrophage subpopulations. Recently, we reported that nitro-fatty acids (NO2-FAs), products of metabolic and inflammatory reactions of nitric oxide and nitrite, modulate macrophage and other immune cell functions. Bone marrow cell suspensions were isolated from mice and supplemented with macrophage colony-stimulating factor (M-CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF) in combination with NO2-OA for different times. RAW 264.7 macrophages were used for short-term (1-5min) experiments. We discovered that NO2-OA reduces cell numbers, cell colony formation, and proliferation of macrophages differentiated with colony-stimulating factors (CSFs), all in the absence of toxicity. In a case of GM-CSF-induced bone marrow-derived macrophages (BMMs), NO2-OA acts via downregulation of signal transducer and activator of transcription 5 and extracellular signal-regulated kinase (ERK) activation. In the case of M-CSF-induced BMMs, NO2-OA decreases activation of M-CSFR and activation of related PI3K and ERK. Additionally, NO2-OA also attenuates activation of BMMs. In aggregate, we demonstrate that NO2-OA regulates the process of macrophage differentiation and that NO2-FAs represent a promising therapeutic tool in the treatment of inflammatory pathologies linked with increased accumulation of macrophages in inflamed tissues.


Asunto(s)
Factores Estimulantes de Colonias/genética , Inflamación/tratamiento farmacológico , Óxido Nítrico/administración & dosificación , Ácido Oléico/administración & dosificación , Animales , Células de la Médula Ósea/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Inflamación/genética , Inflamación/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Macrófagos/efectos de los fármacos , Ratones , Óxido Nítrico/química , Ácido Oléico/química , Fosfatidilinositol 3-Quinasas/genética , Células RAW 264.7 , Factor de Transcripción STAT5/genética
13.
J Biol Chem ; 292(4): 1145-1159, 2017 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-27923813

RESUMEN

Nitroalkene fatty acids are formed in vivo and exert protective and anti-inflammatory effects via reversible Michael addition to thiol-containing proteins in key signaling pathways. Nitro-conjugated linoleic acid (NO2-CLA) is preferentially formed, constitutes the most abundant nitrated fatty acid in humans, and contains two carbons that could potentially react with thiols, modulating signaling actions and levels. In this work, we examined the reactions of NO2-CLA with low molecular weight thiols (glutathione, cysteine, homocysteine, cysteinylglycine, and ß-mercaptoethanol) and human serum albumin. Reactions followed reversible biphasic kinetics, consistent with the presence of two electrophilic centers in NO2-CLA located on the ß- and δ-carbons with respect to the nitro group. The differential reactivity was confirmed by computational modeling of the electronic structure. The rates (kon and koff) and equilibrium constants for both reactions were determined for different thiols. LC-UV-Visible and LC-MS analyses showed that the fast reaction corresponds to ß-adduct formation (the kinetic product), while the slow reaction corresponds to the formation of the δ-adduct (the thermodynamic product). The pH dependence of the rate constants, the correlation between intrinsic reactivity and thiol pKa, and the absence of deuterium solvent kinetic isotope effects suggested stepwise mechanisms with thiolate attack on NO2-CLA as rate-controlling step. Computational modeling supported the mechanism and revealed additional features of the transition states, anionic intermediates, and final neutral products. Importantly, the detection of cysteine-δ-adducts in human urine provided evidence for the biological relevance of this reaction. Finally, human serum albumin was found to bind NO2-CLA both non-covalently and to form covalent adducts at Cys-34, suggesting potential modes for systemic distribution. These results provide new insights into the chemical basis of NO2-CLA signaling actions.


Asunto(s)
Ácido Linoleico/química , Nitrocompuestos/química , Albúmina Sérica/química , Transducción de Señal , Compuestos de Sulfhidrilo/química , Humanos
14.
J Lipid Res ; 58(2): 375-385, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27913584

RESUMEN

Electrophilic nitro-FAs (NO2-FAs) promote adaptive and anti-inflammatory cell signaling responses as a result of an electrophilic character that supports posttranslational protein modifications. A unique pharmacokinetic profile is expected for NO2-FAs because of an ability to undergo reversible reactions including Michael addition with cysteine-containing proteins and esterification into complex lipids. Herein, we report via quantitative whole-body autoradiography analysis of rats gavaged with radiolabeled 10-nitro-[14C]oleic acid, preferential accumulation in adipose tissue over 2 weeks. To better define the metabolism and incorporation of NO2-FAs and their metabolites in adipose tissue lipids, adipocyte cultures were supplemented with 10-nitro-oleic acid (10-NO2-OA), nitro-stearic acid, nitro-conjugated linoleic acid, and nitro-linolenic acid. Then, quantitative HPLC-MS/MS analysis was performed on adipocyte neutral and polar lipid fractions, both before and after acid hydrolysis of esterified FAs. NO2-FAs preferentially incorporated in monoacyl- and diacylglycerides, while reduced metabolites were highly enriched in triacylglycerides. This differential distribution profile was confirmed in vivo in the adipose tissue of NO2-OA-treated mice. This pattern of NO2-FA deposition lends new insight into the unique pharmacokinetics and pharmacologic actions that could be expected for this chemically-reactive class of endogenous signaling mediators and synthetic drug candidates.


Asunto(s)
Tejido Adiposo/metabolismo , Ácidos Grasos/metabolismo , Ácidos Oléicos/administración & dosificación , Ácidos Oléicos/metabolismo , Tejido Adiposo/química , Alquenos/química , Animales , Radioisótopos de Carbono/química , Cisteína/química , Esterificación , Ácidos Grasos/química , Ratones , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Ácidos Oléicos/química , Procesamiento Proteico-Postraduccional , Ratas , Transducción de Señal/efectos de los fármacos , Espectrometría de Masas en Tándem
15.
Cardiovasc Drugs Ther ; 30(6): 579-586, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27858190

RESUMEN

RATIONALE: Pulmonary hypertension (PH) represents a serious health complication accompanied with hypoxic conditions, elevated levels of asymmetric dimethylarginine (ADMA), and overall dysfunction of pulmonary vascular endothelium. Since the prevention strategies for treatment of PH remain largely unknown, our study aimed to explore the effect of nitro-oleic acid (OA-NO2), an exemplary nitro-fatty acid (NO2-FA), in human pulmonary artery endothelial cells (HPAEC) under the influence of hypoxia or ADMA. METHODS: HPAEC were treated with OA-NO2 in the absence or presence of hypoxia and ADMA. The production of nitric oxide (NO) and interleukin-6 (IL-6) was monitored using the Griess method and ELISA, respectively. The expression or activation of different proteins (signal transducer and activator of transcription 3, STAT3; hypoxia inducible factor 1α, HIF-1α; endothelial nitric oxide synthase, eNOS; intercellular adhesion molecule-1, ICAM-1) was assessed by the Western blot technique. RESULTS: We discovered that OA-NO2 prevents development of endothelial dysfunction induced by either hypoxia or ADMA. OA-NO2 preserves normal cellular functions in HPAEC by increasing NO production and eNOS expression. Additionally, OA-NO2 inhibits IL-6 production as well as ICAM-1 expression, elevated by hypoxia and ADMA. Importantly, the effect of OA-NO2 is accompanied by prevention of STAT3 activation and HIF-1α stabilization. CONCLUSION: In summary, OA-NO2 eliminates the manifestation of hypoxia- and ADMA-mediated endothelial dysfunction in HPAEC via the STAT3/HIF-1α cascade. Importantly, our study is bringing a new perspective on molecular mechanisms of NO2-FAs action in pulmonary endothelial dysfunction, which represents a causal link in progression of PH. Graphical Abstract ᅟ.


Asunto(s)
Hipoxia de la Célula/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Ácidos Oléicos/farmacología , Arginina/análogos & derivados , Arginina/farmacología , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Células Endoteliales/metabolismo , Células Endoteliales/fisiología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Interleucina-6/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Arteria Pulmonar/citología , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/metabolismo
16.
Biochim Biophys Acta ; 1860(11 Pt A): 2428-2437, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27431604

RESUMEN

BACKGROUND: Inflammatory-mediated pathological processes in the endothelium arise as a consequence of the dysregulation of vascular homeostasis. Of particular importance are mediators produced by stimulated monocytes/macrophages inducing activation of endothelial cells (ECs). This is manifested by excessive soluble pro-inflammatory mediator production and cell surface adhesion molecule expression. Nitro-fatty acids are endogenous products of metabolic and inflammatory reactions that display immuno-regulatory potential and may represent a novel therapeutic strategy to treat inflammatory diseases. The purpose of our study was to characterize the effects of nitro-oleic acid (OA-NO2) on inflammatory responses and the endothelial-mesenchymal transition (EndMT) in ECs that is a consequence of the altered healing phase of the immune response. METHODS: The effect of OA-NO2 on inflammatory responses and EndMT was determined in murine macrophages and murine and human ECs using Western blotting, ELISA, immunostaining, and functional assays. RESULTS: OA-NO2 limited the activation of macrophages and ECs by reducing pro-inflammatory cytokine production and adhesion molecule expression through its modulation of STAT, MAPK and NF-κB-regulated signaling. OA-NO2 also decreased transforming growth factor-ß-stimulated EndMT and pro-fibrotic phenotype of ECs. These effects are related to the downregulation of Smad2/3. CONCLUSIONS: The study shows the pleiotropic effect of OA-NO2 on regulating EC-macrophage interactions during the immune response and suggests a role for OA-NO2 in the regulation of vascular endothelial immune and fibrotic responses arising during chronic inflammation. GENERAL SIGNIFICANCE: These findings propose the OA-NO2 may be useful as a novel therapeutic agent for treatment of cardiovascular disorders associated with dysregulation of the endothelial immune response.


Asunto(s)
Endotelio Vascular/efectos de los fármacos , Transición Epitelial-Mesenquimal , Ácidos Oléicos/farmacología , Animales , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Humanos , Inflamación/metabolismo , Sistema de Señalización de MAP Quinasas , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , FN-kappa B/metabolismo , Factores de Transcripción STAT/metabolismo , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/farmacología
17.
Redox Biol ; 8: 1-10, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26722838

RESUMEN

Nitro-fatty acids (NO2-FA) are metabolic and inflammatory-derived electrophiles that mediate pleiotropic signaling actions. It was hypothesized that NO2-FA would impact mitochondrial redox reactions to induce tissue-protective metabolic shifts in cells. Nitro-oleic acid (OA-NO2) reversibly inhibited complex II-linked respiration in isolated rat heart mitochondria in a pH-dependent manner and suppressed superoxide formation. Nitroalkylation of Fp subunit was determined by BME capture and the site of modification by OA-NO2 defined by mass spectrometric analysis. These effects translated into reduced basal and maximal respiration and favored glycolytic metabolism in H9C2 cardiomyoblasts as assessed by extracellular H(+) and O2 flux analysis. The perfusion of NO2-FA induced acute cardioprotection in an isolated perfused heart ischemia/reperfusion (IR) model as evidenced by significantly higher rate-pressure products. Together these findings indicate that NO2-FA can promote cardioprotection by inducing a shift from respiration to glycolysis and suppressing reactive species formation in the post-ischemic interval.


Asunto(s)
Alquenos/metabolismo , Respiración de la Célula , Complejo II de Transporte de Electrones/metabolismo , Ácidos Grasos/metabolismo , Mitocondrias Cardíacas/metabolismo , Isquemia Miocárdica/metabolismo , Nitrocompuestos/metabolismo , Alquenos/farmacología , Animales , Cardiotónicos/metabolismo , Cardiotónicos/farmacología , Línea Celular , Complejo II de Transporte de Electrones/antagonistas & inhibidores , Complejo III de Transporte de Electrones/metabolismo , Ácidos Grasos/farmacología , Concentración de Iones de Hidrógeno , Masculino , Mioblastos Cardíacos/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Óxido Nítrico/metabolismo , Nitrocompuestos/farmacología , Oxidación-Reducción , Ratas , Superóxidos/metabolismo
18.
Free Radic Biol Med ; 90: 252-260, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26620549

RESUMEN

Inflammation is an immune response triggered by microbial invasion and/or tissue injury. While acute inflammation is directed toward invading pathogens and injured cells, thus enabling tissue regeneration, chronic inflammation can lead to severe pathologies and tissue dysfunction. These processes are linked with macrophage polarization into specific inflammatory "M1-like" or regulatory "M2-like" subsets. Nitro-fatty acids (NO2-FAs), produced endogenously as byproducts of metabolism and oxidative inflammatory conditions, may be useful for treating diseases associated with dysregulated immune homeostasis. The goal of this study was to characterize the role of nitro-oleic acid (OA-NO2) in regulating the functional specialization of macrophages induced by bacterial lipopolysaccharide or interleukin-4, and to reveal specific signaling mechanisms which can account for OA-NO2-dependent modulation of inflammation and fibrotic responses. Our results show that OA-NO2 inhibits lipopolysaccharide-stimulated production of both pro-inflammatory and immunoregulatory cytokines (including transforming growth factor-ß) and inhibits nitric oxide and superoxide anion production. OA-NO2 also decreases interleukin-4-induced macrophage responses by inhibiting arginase-I expression and transforming growth factor-ß production. These effects are mediated via downregulation of signal transducers and activators of transcription, mitogen-activated protein kinase and nuclear factor-кB signaling responses. Finally, OA-NO2 inhibits fibrotic processes in an in vivo model of angiotensin II-induced myocardial fibrosis by attenuating expression of α-smooth muscle actin, systemic transforming growth factor-ß levels and infiltration of both "M1-" and "M2-like" macrophage subsets into afflicted tissue. Overall, the electrophilic fatty acid derivative OA-NO2 modulates a broad range of "M1-" and "M2-like" macrophage functions and represents a potential therapeutic approach to target diseases associated with dysregulated macrophage subsets.


Asunto(s)
Activación de Macrófagos/efectos de los fármacos , Ácidos Oléicos/farmacología , Animales , Células Cultivadas , Fibrosis , Interleucina-4/farmacología , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos C57BL , Miocardio/patología , Óxido Nítrico/biosíntesis , PPAR gamma/fisiología , Factor de Transcripción STAT3/fisiología , Superóxidos/metabolismo
19.
Cardiovasc Res ; 109(1): 174-84, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26598510

RESUMEN

AIM: Atrial fibrosis, one of the most striking features in the pathology of atrial fibrillation (AF), is promoted by local and systemic inflammation. Electrophilic fatty acid nitroalkenes, endogenously generated by both metabolic and inflammatory reactions, are anti-inflammatory mediators that in synthetic form may be useful as drug candidates. Herein we investigate whether an exemplary nitro-fatty acid can limit atrial fibrosis and AF. METHODS AND RESULTS: Wild-type C57BL6/J mice were treated for 2 weeks with angiotensin II (AngII) and vehicle or nitro-oleic acid (10-nitro-octadec-9-enoic acid, OA-NO2, 6 mg/kg body weight) via subcutaneous osmotic minipumps. OA-NO2 significantly inhibited atrial fibrosis and depressed vulnerability for AF during right atrial electrophysiological stimulation to levels observed for AngII-naive animals. Left atrial epicardial mapping studies demonstrated preservation of conduction homogeneity by OA-NO2. The protection from fibrotic remodelling was mediated by suppression of Smad2-dependent myofibroblast transdifferentiation and inhibition of Nox2-dependent atrial superoxide formation. CONCLUSION: OA-NO2 potently inhibits atrial fibrosis and subsequent AF. Nitro-fatty acids and possibly other lipid electrophiles thus emerge as potential therapeutic agents for AF, either by increasing endogenous levels through dietary modulation or by administration as synthetic drugs.


Asunto(s)
Angiotensina II/farmacología , Fibrilación Atrial/prevención & control , Remodelación Atrial/efectos de los fármacos , Ácidos Linoleicos/farmacología , Nitrocompuestos/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Transdiferenciación Celular/efectos de los fármacos , Células Cultivadas , Conexina 43/análisis , Fibrosis , Atrios Cardíacos/patología , Ratones , Ratones Endogámicos C57BL , Proteína Smad2/antagonistas & inhibidores
20.
Free Radic Biol Med ; 87: 113-24, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26066303

RESUMEN

Electrophilic fatty acid nitroalkenes (NO(2)-FA) are products of nitric oxide and nitrite-mediated unsaturated fatty acid nitration. These electrophilic products induce pleiotropic signaling actions that modulate metabolic and inflammatory responses in cell and animal models. The metabolism of NO(2)-FA includes reduction of the vinyl nitro moiety by prostaglandin reductase-1, mitochondrial ß-oxidation, and Michael addition with low molecular weight nucleophilic amino acids. Complex lipid reactions of fatty acid nitroalkenes are not well defined. Herein we report the detection and characterization of NO(2)-FA-containing triacylglycerides (NO(2)-FA-TAG) via mass spectrometry-based methods. In this regard, unsaturated fatty acids of dietary triacylglycerides are targets for nitration reactions during gastric acidification, where NO(2)-FA-TAG can be detected in rat plasma after oral administration of nitro-oleic acid (NO(2)-OA). Furthermore, the characterization and profiling of these species, including the generation of beta oxidation and dehydrogenation products, could be detected in NO(2)-OA-supplemented adipocytes. These data revealed that NO(2)-FA-TAG, formed by either the direct nitration of esterified unsaturated fatty acids or the incorporation of nitrated free fatty acids into triacylglycerides, contribute to the systemic distribution of these reactive electrophilic mediators and may serve as a depot for subsequent mobilization by lipases to in turn impact adipocyte homeostasis and tissue signaling events.


Asunto(s)
Alquenos/metabolismo , Esterificación , Ácidos Grasos/metabolismo , Óxido Nítrico/metabolismo , Triglicéridos/metabolismo , Animales , Masculino , Mitocondrias/metabolismo , Nitrocompuestos/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Ratas , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA