Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Pain Rep ; 9(2): e1145, 2024 Apr.
Article En | MEDLINE | ID: mdl-38482044

Introduction: Sustained opioid use has long-term negative impacts on future pain experience, particularly in women. This study aimed to investigate the underlying spinal neurobiology of this clinical observation in an experimental model of joint pain. Objectives: In this study, we tested the hypothesis that sustained opioid treatment exacerbates chronic pain responses and alters spinal cord dorsal horn astrogliosis and the expression of GluN2B-containing N-methyl-d-aspartate receptors in female rats. Methods: Subcutaneous morphine (3 mg/kg) or saline was administered twice daily for 1 week before inducing a model of joint knee pain (intra-articular injection of 2 mg of monosodium iodoacetate [MIA]) in adult female Sprague-Dawley rats, with pain-free controls receiving 50 µL of saline. Pain behavior (weight-bearing and mechanical paw withdrawal thresholds) was measured at baseline and at intervals thereafter. Twice-daily morphine/saline treatment was continued for up to 3 weeks after intra-articular injections, and spinal cord tissue was collected for Western blot analyses. Results: Area under the curve analysis of weight-bearing asymmetry confirmed a significant exacerbation of pain behavior in the morphine/MIA group, compared with the saline/MIA group (F(3,18) = 46.3, P < 0.0001), despite comparable joint damage in both groups. Sustained morphine treatment was associated with significant elevations in dorsal horn expression of astrocytic glial fibrillary acidic protein (27 ± 5% increase) and neuronal GluN2B (80 ± 30% increase), but not microglial IBA1, irrespective of the model of joint pain. Conclusion: These data suggest that sustained morphine treatment in female rats drives spinal cord plasticity, including spinal astrogliosis and the expression of GluN2B-containing N-methyl-d-aspartate receptors, priming the dorsal horn to incoming sensory inputs and producing exacerbated pain responses.

2.
J Pain ; 24(8): 1478-1492, 2023 08.
Article En | MEDLINE | ID: mdl-37044295

Although chronic pain states have been associated with impaired cognitive functions, including memory and cognitive flexibility, the cognitive effects of osteoarthritis (OA) pain remain to be clarified. The aim of this study was to measure cognitive function in the mono-iodoacetate (MIA) rat model of chronic OA-like knee pain. We used young adult male Lister hooded rats, which are well-suited for cognitive testing. Rats received either a unilateral knee injection of MIA (3 mg/50 µL) or saline as control. Joint pain at rest was assessed for up to 12 weeks, using weight-bearing asymmetry, and referred pain at a distal site, using determination of hindpaw withdrawal thresholds. The watermaze delayed-matching-to-place test of rapid place learning, novel object recognition memory assay, and an operant response-shift and -reversal task were used to measure memory and behavioral flexibility. Open-field locomotor activity, startle response, and prepulse inhibition were also measured for comparison. MIA-injected rats showed markedly reduced weight-bearing on the injured limb, as well as pronounced cartilage damage and synovitis, but interestingly no changes in paw withdrawal threshold. Rearing was reduced, but otherwise, locomotor activity was normal and no changes in startle and prepulse inhibition were detected. MIA-injected rats had intact watermaze delayed-matching-to-place performance, suggesting no substantial change in hippocampal function, and there were no changes in novel object recognition memory or performance on the operant task of behavioral flexibility. Our finding that OA-like pain does not alter hippocampal function, unlike other chronic pain conditions, is consistent with human neuroimaging findings. PERSPECTIVE: Young adult rats with OA-like knee pain showed no impairments in hippocampal memory function and behavioral flexibility, suggesting that OA pain impacts cognitive functions less than other chronic pain conditions. In patients, OA pain may interact with other factors (e.g., age, socio-economic factors, and medication) to impair cognition.


Chronic Pain , Cognitive Dysfunction , Osteoarthritis, Knee , Rats , Humans , Male , Animals , Osteoarthritis, Knee/chemically induced , Osteoarthritis, Knee/complications , Disease Models, Animal , Pain Measurement/methods , Cognitive Dysfunction/etiology
3.
Neuropharmacology ; 213: 109075, 2022 08 01.
Article En | MEDLINE | ID: mdl-35490907

Osteoarthritis (OA) is a chronic joint disease that represents an increasingly substantial global burden. Joint pain is the most significant symptom of OA. Unfortunately, current pharmacological treatments for OA pain are often not wholly efficacious, or are associated with serious adverse effects. This lack of effective pain relief has seen the prescription of opioids for OA pain increase over the past decades. The long-term adverse effects of prescribed opioids alongside the increasing prevalence of OA pain highlights the need for alternative analgesics. Understanding the mechanisms that drive this chronic joint pain is crucial for the development of novel analgesics. OA is a heterogeneous disease, and this is reflected by the diversity of pain phenotypes in people with the disease. Herein, we review current understanding of the biological changes at the joint and within the central nervous system that drive this chronic pain. We particularly focus on the most recent advances in our understanding of the peripheral nociceptive mechanisms that underlie chronic OA pain and highlight how targeting peripheral OA inflammation may open up opportunities for novel analgesics.


Chronic Pain , Osteoarthritis , Analgesics/therapeutic use , Analgesics, Opioid/adverse effects , Arthralgia/drug therapy , Chronic Pain/drug therapy , Humans , Osteoarthritis/complications , Osteoarthritis/drug therapy
4.
Pain Rep ; 6(4): e956, 2021.
Article En | MEDLINE | ID: mdl-35128295

INTRODUCTION: Negative affect, including anxiety and depression, is prevalent in chronic pain states such as osteoarthritis (OA) and associated with greater use of opioid analgesics, potentially contributing to present and future opioid crises. OBJECTIVES: We tested the hypothesis that the interaction between anxiety, chronic pain, and opioid use results from altered endogenous opioid function. METHODS: A genetic model of negative affect, the Wistar-Kyoto (WKY) rat, was combined with intra-articular injection of monosodium iodoacetate (MIA; 1 mg) to mimic clinical presentation. Effects of systemic morphine (0.5-3.5 mg·kg-1) on pain behaviour and spinal nociceptive neuronal activity were compared in WKY and normo-anxiety Wistar rats 3 weeks after MIA injection. Endogenous opioid function was probed by the blockade of opioid receptors (0.1-1 mg·kg-1 systemic naloxone), quantification of plasma ß-endorphin, and expression and phosphorylation of spinal mu-opioid receptor (MOR). RESULTS: Monosodium iodoacetate-treated WKY rats had enhanced OA-like pain, blunted morphine-induced analgesia, and greater mechanical hypersensitivity following systemic naloxone, compared with Wistar rats, and elevated plasma ß-endorphin levels compared with saline-treated WKY controls. Increased MOR phosphorylation at the master site (serine residue 375) in the spinal cord dorsal horn of WKY rats with OA-like pain (P = 0.0312) indicated greater MOR desensitization. CONCLUSIONS: Reduced clinical analgesic efficacy of morphine was recapitulated in a model of high anxiety and OA-like pain, in which endogenous opioid tone was altered, and MOR function attenuated, in the absence of previous exogenous opioid ligand exposure. These findings shed new light on the mechanisms underlying the increased opioid analgesic use in high anxiety patients with chronic pain.

5.
Pain ; 161(1): 61-73, 2020 01.
Article En | MEDLINE | ID: mdl-31479064

Brain-derived neurotrophic factor (BDNF) and the high-affinity receptor tropomyosin receptor kinase B (TrkB) have important roles in neuronal survival and in spinal sensitization mechanisms associated with chronic pain. Recent clinical evidence also supports a peripheral role of BDNF in osteoarthritis (OA), with synovial expression of TrkB associated with higher OA pain. The aim of this study was to use clinical samples and animal models to explore the potential contribution of knee joint BDNF/TrkB signalling to chronic OA pain. Brain-derived neurotrophic factor and TrkB mRNA and protein were present in knee synovia from OA patients (16 women, 14 men, median age 67 years [interquartile range: 61-73]). There was a significant positive correlation between mRNA expression of NTRK2 (TrkB) and the proinflammatory chemokine fractalkine in the OA synovia. Using the surgical medial meniscal transection (MNX) model and the chemical monosodium iodoacetate (MIA) model of OA pain in male rats, the effects of peripheral BDNF injection, vs sequestering endogenous BDNF with TrkB-Fc chimera, on established pain behaviour were determined. Intra-articular injection of BDNF augmented established OA pain behaviour in MIA rats, but had no effect in controls. Intra-articular injection of the TrkB-Fc chimera acutely reversed pain behaviour to a similar extent in both models of OA pain (weight-bearing asymmetry MIA: -11 ± 4%, MNX: -12 ± 4%), compared to vehicle treatment. Our data suggesting a contribution of peripheral knee joint BDNF/TrkB signalling in the maintenance of chronic OA joint pain support further investigation of the therapeutic potential of this target.


Arthralgia/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Chronic Pain/metabolism , Membrane Glycoproteins/metabolism , Osteoarthritis, Knee/metabolism , Receptor, trkB/metabolism , Synovial Membrane/metabolism , Aged , Animals , Arthralgia/genetics , Arthritis, Experimental/genetics , Arthritis, Experimental/metabolism , Brain-Derived Neurotrophic Factor/genetics , Chronic Pain/genetics , Female , Humans , Male , Membrane Glycoproteins/genetics , Middle Aged , Osteoarthritis, Knee/genetics , Pain Measurement , Rats , Rats, Sprague-Dawley , Receptor, trkB/genetics
6.
Pain ; 160(11): 2641-2650, 2019 11.
Article En | MEDLINE | ID: mdl-31425488

Spinal hyperexcitability is a key event in the development of persistent pain, and arises partly from alterations in the number and localization of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)-type glutamate receptors. However, determining precisely where these changes occur is challenging due to the requirement for multiplex labelling and nanoscale resolution. The recent development of super-resolution light microscopy provides new tools to address these challenges. Here, we apply combined confocal/direct STochastic Optical Reconstruction Microscopy (dSTORM) to reveal changes in calcium-permeable subunits of AMPA-type glutamate receptors (GluA1) at identified spinal cord dorsal horn (SCDH) peptidergic axon terminals in a model of inflammatory pain. L4/5 lumbar spinal cord was collected from adult male C57BL/6J mice 24 hours after unilateral hind paw injection of saline or 1% carrageenan (n = 6/group). Tissue was immunolabelled for markers of peptidergic axon terminals (substance P; SP), presynaptic active zones (Bassoon), and GluA1. Direct stochastic optical reconstruction microscopy revealed a 59% increase in total GluA1 immunolabelling in the SCDH in the carrageenan group, which was not detected by confocal microscopy. Cell type-specific analyses identified a 10-fold increase in GluA1 localized to SP structures, and identified GluA1 nanodomains that scaled with behavioural hypersensitivity, and were associated with synaptic release sites. These findings demonstrate that dSTORM has the sensitivity and power to detect nanoscale anatomical changes in the SCDH, and provides new evidence for synaptic insertion of GluA1-AMPA-Rs at spinal peptidergic nociceptive terminals in a model of inflammatory pain.


Calcium/metabolism , Inflammation/metabolism , Pain/physiopathology , Receptors, AMPA/metabolism , Animals , Male , Mice, Inbred C57BL , Posterior Horn Cells/metabolism , Presynaptic Terminals/metabolism , Spinal Cord/metabolism , Spinal Cord Dorsal Horn/metabolism , Synapses/metabolism
7.
Pain ; 160(3): 658-669, 2019 Mar.
Article En | MEDLINE | ID: mdl-30779717

Anxiety and depression are associated with increased pain responses in chronic pain states. The extent to which anxiety drives chronic pain, or vice versa, remains an important question that has implications for analgesic treatment strategies. Here, the effect of existing anxiety on future osteoarthritis (OA) pain was investigated, and potential mechanisms were studied in an animal model. Pressure pain detection thresholds, anxiety, and depression were assessed in people with (n = 130) or without (n = 100) painful knee OA. Separately, knee pain and anxiety scores were also measured twice over 12 months in 4730 individuals recruited from the general population. A preclinical investigation of a model of OA pain in normo-anxiety Sprague-Dawley (SD) and high-anxiety Wistar Kyoto (WKY) rats assessed underlying neurobiological mechanisms. Higher anxiety, independently from depression, was associated with significantly lower pressure pain detection thresholds at sites local to (P < 0.01) and distant from (P < 0.05) the painful knee in patients with OA. Separately, high anxiety scores predicted increased risk of knee pain onset in 3274 originally pain-free people over the 1-year period (odds ratio = 1.71; 95% confidence interval = 1.25-2.34, P < 0.00083). Similarly, WKY rats developed significantly lower ipsilateral and contralateral hind paw withdrawal thresholds in the monosodium iodoacetate model of OA pain, compared with SD rats (P = 0.0005). Linear regressions revealed that baseline anxiety-like behaviour was predictive of lowered paw withdrawal thresholds in WKY rats, mirroring the human data. This augmented pain phenotype was significantly associated with increased glial fibrillary acidic protein immunofluorescence in pain-associated brain regions, identifying supraspinal astrocyte activation as a significant mechanism underlying anxiety-augmented pain behaviour.


Anxiety/etiology , Astrocytes/physiology , Chronic Pain/complications , Musculoskeletal Pain/complications , Musculoskeletal Pain/pathology , Aged , Animals , Disease Models, Animal , Female , Glial Fibrillary Acidic Protein/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Male , Middle Aged , Pain Measurement , Psychiatric Status Rating Scales , Rats, Inbred WKY , Rats, Sprague-Dawley
8.
Neuropharmacology ; 124: 105-120, 2017 Sep 15.
Article En | MEDLINE | ID: mdl-28625720

Chronic pain states are highly prevalent and yet poorly controlled by currently available analgesics, representing an enormous clinical, societal, and economic burden. Existing pain medications have significant limitations and adverse effects including tolerance, dependence, gastrointestinal dysfunction, cognitive impairment, and a narrow therapeutic window, making the search for novel analgesics ever more important. In this article, we review the role of an important endogenous pain control system, the endocannabinoid (EC) system, in the sensory, emotional, and cognitive aspects of pain. Herein, we briefly cover the discovery of the EC system and its role in pain processing pathways, before concentrating on three areas of current major interest in EC pain research; 1. Pharmacological enhancement of endocannabinoid activity (via blockade of EC metabolism or allosteric modulation of CB1receptors); 2. The EC System and stress-induced modulation of pain; and 3. The EC system & medial prefrontal cortex (mPFC) dysfunction in pain states. Whilst we focus predominantly on the preclinical data, we also include extensive discussion of recent clinical failures of endocannabinoid-related therapies, the future potential of these approaches, and important directions for future research on the EC system and pain. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology".


Endocannabinoids/physiology , Pain/physiopathology , Prefrontal Cortex/physiopathology , Stress, Psychological/physiopathology , Allosteric Regulation , Animals , Endocannabinoids/metabolism , Humans , Receptor, Cannabinoid, CB1/drug effects
9.
Handb Exp Pharmacol ; 227: 119-43, 2015.
Article En | MEDLINE | ID: mdl-25846617

Preparations of the Cannabis sativa plant have been used to analgesic effect for millenia, but only in recent decades has the endogenous system responsible for these effects been described. The endocannabinoid (EC) system is now known to be one of the key endogenous systems regulating pain sensation, with modulatory actions at all stages of pain processing pathways. The EC system is composed of two main cannabinoid receptors (CB1 and CB2) and two main classes of endogenous ligands or endocannabinoids (ECs). The receptors have distinct expression profiles, with CB1 receptors found at presynaptic sites throughout the peripheral and central nervous systems (PNS and CNS, respectively), whilst CB2 receptor is found principally (but not exclusively) on immune cells. The endocannabinoid ligands are lipid neurotransmitters belonging to either the N-acyl ethanolamine (NAEs) class, e.g. anandamide (AEA), or the monoacylglycerol class, e.g. 2-arachidonoyl glycerol (2-AG). Both classes are short-acting transmitter substances, being synthesised on demand and with signalling rapidly terminated by specific enzymes. ECs acting at CB1 negatively regulate neurotransmission throughout the nervous system, whilst those acting at CB2 regulate the activity of CNS immune cells. Signalling through both of these receptor subtypes has a role in normal nociceptive processing and also in the development resolution of acute pain states. In this chapter, we describe the general features of the EC system as related to pain and nociception and discuss the wealth of preclinical and clinical data involving targeting the EC system with focus on two areas of particular promise: modulation of 2-AG signalling via specific enzyme inhibitors and the role of spinal CB2 in chronic pain states.


Endocannabinoids/physiology , Pain/physiopathology , Animals , Humans , Receptors, Cannabinoid/physiology , Spinal Cord/physiology
10.
Nat Neurosci ; 18(1): 75-86, 2015 Jan.
Article En | MEDLINE | ID: mdl-25485758

A major challenge in neuroscience is to determine the nanoscale position and quantity of signaling molecules in a cell type- and subcellular compartment-specific manner. We developed a new approach to this problem by combining cell-specific physiological and anatomical characterization with super-resolution imaging and studied the molecular and structural parameters shaping the physiological properties of synaptic endocannabinoid signaling in the mouse hippocampus. We found that axon terminals of perisomatically projecting GABAergic interneurons possessed increased CB1 receptor number, active-zone complexity and receptor/effector ratio compared with dendritically projecting interneurons, consistent with higher efficiency of cannabinoid signaling at somatic versus dendritic synapses. Furthermore, chronic Δ(9)-tetrahydrocannabinol administration, which reduces cannabinoid efficacy on GABA release, evoked marked CB1 downregulation in a dose-dependent manner. Full receptor recovery required several weeks after the cessation of Δ(9)-tetrahydrocannabinol treatment. These findings indicate that cell type-specific nanoscale analysis of endogenous protein distribution is possible in brain circuits and identify previously unknown molecular properties controlling endocannabinoid signaling and cannabis-induced cognitive dysfunction.


Image Processing, Computer-Assisted/methods , Neuroimaging/methods , Receptors, Cannabinoid/physiology , Receptors, Cannabinoid/ultrastructure , Animals , Cannabinoids/pharmacology , Dose-Response Relationship, Drug , HEK293 Cells , Hippocampus/physiology , Hippocampus/ultrastructure , Humans , Interneurons/physiology , Male , Mice , Mice, Inbred C57BL , Presynaptic Terminals/physiology , Presynaptic Terminals/ultrastructure , Receptor, Cannabinoid, CB1/drug effects , Signal Transduction/physiology , Synapses/physiology , Synapses/ultrastructure , gamma-Aminobutyric Acid/physiology
11.
Eur J Neurosci ; 39(3): 419-34, 2014 Feb.
Article En | MEDLINE | ID: mdl-24494682

Monoacylglycerol lipase (MGL) is a multifunctional serine hydrolase, which terminates anti-nociceptive endocannabinoid signaling and promotes pro-nociceptive prostaglandin signaling. Accordingly, both acute nociception and its sensitization in chronic pain models are prevented by systemic or focal spinal inhibition of MGL activity. Despite its analgesic potential, the neurobiological substrates of beneficial MGL blockade have remained unexplored. Therefore, we examined the regional, cellular and subcellular distribution of MGL in spinal circuits involved in nociceptive processing. All immunohistochemical findings obtained with light, confocal or electron microscopy were validated in MGL-knockout mice. Immunoperoxidase staining revealed a highly concentrated accumulation of MGL in the dorsal horn, especially in superficial layers. Further electron microscopic analysis uncovered that the majority of MGL-immunolabeling is found in axon terminals forming either asymmetric glutamatergic or symmetric γ-aminobutyric acid/glycinergic synapses in laminae I/IIo. In line with this presynaptic localization, analysis of double-immunofluorescence staining by confocal microscopy showed that MGL colocalizes with neurochemical markers of peptidergic and non-peptidergic nociceptive terminals, and also with markers of local excitatory or inhibitory interneurons. Interestingly, the ratio of MGL-immunolabeling was highest in calcitonin gene-related peptide-positive peptidergic primary afferents, and the staining intensity of nociceptive terminals was significantly reduced in MGL-knockout mice. These observations highlight the spinal nociceptor synapse as a potential anatomical site for the analgesic effects of MGL blockade. Moreover, the presence of MGL in additional terminal types raises the possibility that MGL may play distinct regulatory roles in synaptic endocannabinoid or prostaglandin signaling according to its different cellular locations in the dorsal horn pain circuitry.


Monoacylglycerol Lipases/metabolism , Presynaptic Terminals/enzymology , Sensory Receptor Cells/enzymology , Spinal Cord/enzymology , Animals , Mice , Mice, Inbred C57BL , Monoacylglycerol Lipases/genetics , Nociception , Organ Specificity , Sensory Receptor Cells/physiology , Spinal Cord/cytology , Spinal Cord/physiology
12.
Proc Nutr Soc ; 73(1): 106-17, 2014 Feb.
Article En | MEDLINE | ID: mdl-24148358

The endocannabinoid (EC) system consists of two main receptors: cannabinoid type 1 receptor cannabinoid receptors are found in both the central nervous system (CNS) and periphery, whereas the cannabinoid type 2 receptor cannabinoid receptor is found principally in the immune system and to a lesser extent in the CNS. The EC family consists of two classes of well characterised ligands; the N-acyl ethanolamines, such as N-arachidonoyl ethanolamide or anandamide (AEA), and the monoacylglycerols, such as 2-arachidonoyl glycerol. The various synthetic and catabolic pathways for these enzymes have been (with the exception of AEA synthesis) elucidated. To date, much work has examined the role of EC in nociceptive processing and the potential of targeting the EC system to produce analgesia. Cannabinoid receptors and ligands are found at almost every level of the pain pathway from peripheral sites, such as peripheral nerves and immune cells, to central integration sites such as the spinal cord, and higher brain regions such as the periaqueductal grey and the rostral ventrolateral medulla associated with descending control of pain. EC have been shown to induce analgesia in preclinical models of acute nociception and chronic pain states. The purpose of this review is to critically evaluate the evidence for the role of EC in the pain pathway and the therapeutic potential of EC to produce analgesia. We also review the present clinical work conducted with EC, and examine whether targeting the EC system might offer a novel target for analgesics, and also potentially disease-modifying interventions for pathophysiological pain states.


Analgesia/methods , Analgesics/therapeutic use , Arachidonic Acids/metabolism , Endocannabinoids/therapeutic use , Glycerides/metabolism , Pain/drug therapy , Polyunsaturated Alkamides/metabolism , Receptors, Cannabinoid/metabolism , Analgesics/pharmacology , Endocannabinoids/metabolism , Endocannabinoids/pharmacology , Humans , Nervous System
13.
Philos Trans R Soc Lond B Biol Sci ; 367(1607): 3300-11, 2012 Dec 05.
Article En | MEDLINE | ID: mdl-23108548

The analgesic effects of cannabinoid ligands, mediated by CB1 receptors are well established. However, the side-effect profile of CB1 receptor ligands has necessitated the search for alternative cannabinoid-based approaches to analgesia. Herein, we review the current literature describing the impact of chronic pain states on the key components of the endocannabinoid receptor system, in terms of regionally restricted changes in receptor expression and levels of key metabolic enzymes that influence the local levels of the endocannabinoids. The evidence that spinal CB2 receptors have a novel role in the modulation of nociceptive processing in models of neuropathic pain, as well as in models of cancer pain and arthritis is discussed. Recent advances in our understanding of the spinal location of the key enzymes that regulate the levels of the endocannabinoid 2-AG are discussed alongside the outcomes of recent studies of the effects of inhibiting the catabolism of 2-AG in models of pain. The complexities of the enzymes capable of metabolizing both anandamide (AEA) and 2-AG have become increasingly apparent. More recently, it has come to light that some of the metabolites of AEA and 2-AG generated by cyclooxygenase-2, lipoxygenases and cytochrome P450 are biologically active and can either exacerbate or inhibit nociceptive signalling.


Arachidonic Acids/metabolism , Chronic Pain/metabolism , Endocannabinoids/metabolism , Neuralgia/physiopathology , Polyunsaturated Alkamides/metabolism , Analgesics/pharmacology , Animals , Arthritis/metabolism , Arthritis/physiopathology , Cannabinoid Receptor Agonists/pharmacology , Chronic Pain/physiopathology , Disease Models, Animal , Glycerides/metabolism , Humans , Neoplasms/metabolism , Neoplasms/physiopathology , Neuralgia/drug therapy , Neuralgia/metabolism , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism
14.
Mol Pain ; 7: 88, 2011 Nov 17.
Article En | MEDLINE | ID: mdl-22093915

BACKGROUND: Clinical studies of osteoarthritis (OA) suggest central sensitization may contribute to the chronic pain experienced. This preclinical study used the monosodium iodoacetate (MIA) model of OA joint pain to investigate the potential contribution of spinal sensitization, in particular spinal glial cell activation, to pain behaviour in this model. Experimental OA was induced in the rat by the intra-articular injection of MIA and pain behaviour (change in weight bearing and distal allodynia) was assessed. Spinal cord microglia (Iba1 staining) and astrocyte (GFAP immunofluorescence) activation were measured at 7, 14 and 28 days post MIA-treatment. The effects of two known inhibitors of glial activation, nimesulide and minocycline, on pain behaviour and activation of microglia and astrocytes were assessed. RESULTS: Seven days following intra-articular injection of MIA, microglia in the ipsilateral spinal cord were activated (p < 0.05, compared to contralateral levels and compared to saline controls). Levels of activated microglia were significantly elevated at day 14 and 21 post MIA-injection. At day 28, microglia activation was significantly correlated with distal allodynia (p < 0.05). Ipsilateral spinal GFAP immunofluorescence was significantly (p < 0.01) increased at day 28, but not at earlier timepoints, in the MIA model, compared to saline controls. Repeated oral dosing (days 14-20) with nimesulide attenuated pain behaviour and the activation of microglia in the ipsilateral spinal cord at day 21. This dosing regimen also significantly attenuated distal allodynia (p < 0.001) and numbers of activated microglia (p < 0.05) and GFAP immunofluorescence (p < 0.001) one week later in MIA-treated rats, compared to vehicle-treated rats. Repeated administration of minocycline also significantly attenuated pain behaviour and reduced the number of activated microglia and decreased GFAP immunofluorescence in ipsilateral spinal cord of MIA treated rats. CONCLUSIONS: Here we provide evidence for a contribution of spinal glial cells to pain behaviour, in particular distal allodynia, in this model of osteoarthritic pain. Our data suggest there is a potential role of glial cells in the central sensitization associated with OA, which may provide a novel analgesic target for the treatment of OA pain.


Chronic Pain/metabolism , Iodoacetates/therapeutic use , Neuroglia/physiology , Osteoarthritis, Spine/metabolism , Spinal Cord/metabolism , Animals , Astrocytes/pathology , Astrocytes/physiology , Chronic Pain/pathology , Chronic Pain/physiopathology , Fluorescent Antibody Technique , Hyperalgesia/drug therapy , Hyperalgesia/pathology , Hyperalgesia/physiopathology , Iodoacetates/pharmacology , Male , Minocycline/pharmacology , Minocycline/therapeutic use , Neuroglia/pathology , Osteoarthritis, Spine/pathology , Osteoarthritis, Spine/physiopathology , Pain Measurement , Rats , Rats, Sprague-Dawley , Spinal Cord/pathology , Spinal Cord/physiopathology
15.
Mol Pain ; 5: 59, 2009 Oct 08.
Article En | MEDLINE | ID: mdl-19814807

The analgesic effects of cannabinoids are well documented, but these are often limited by psychoactive side-effects. Recent studies indicate that the endocannabinoid system is dynamic and altered under different pathological conditions, including pain states. Changes in this receptor system include altered expression of receptors, differential synthetic pathways for endocannabinoids are expressed by various cell types, multiple pathways of catabolism and the generation of biologically active metabolites, which may be engaged under different conditions. This review discusses the evidence that pain states alter the endocannabinoid receptor system at key sites involved in pain processing and how these changes may inform the development of cannabinoid-based analgesics.


Analgesia , Cannabinoid Receptor Modulators/metabolism , Endocannabinoids , Amidohydrolases/metabolism , Animals , Cannabinoid Receptor Modulators/biosynthesis , Cannabinoids/metabolism , Humans , Pain/metabolism , Peroxisome Proliferator-Activated Receptors/metabolism
...