Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 291(8): 4236-46, 2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26742839

RESUMEN

Tetherin, also known as bone marrow stromal antigen 2 (BST-2), inhibits the release of a wide range of enveloped viruses, including human immunodeficiency virus, type 1 (HIV-1) by directly tethering nascent virions to the surface of infected cells. The HIV-1 accessary protein Vpu counteracts tetherin restriction via sequestration, down-regulation, and/or displacement mechanisms to remove tetherin from sites of virus budding. However, the exact mechanism of Vpu-mediated antagonism of tetherin restriction remains to be fully understood. Here we report a novel role for the actin cross-linking regulator filamin A (FLNa) in Vpu anti-tetherin activities. We demonstrate that FLNa associates with tetherin and that FLNa modulates tetherin turnover. FLNa deficiency was found to enhance cell surface and steady-state levels of tetherin expression. In contrast, we observed that overexpression of FLNa reduced tetherin expression levels both on the plasma membrane and in intracellular compartments. Although FLNb shows high amino acid sequence similarity with FLNa, we reveal that only FLNa, but not FLNb, plays an essential role in tetherin turnover. We further showed that FLNa deficiency inhibited Vpu-mediated enhancement of virus release through interfering with the activity of Vpu to down-regulate cellular tetherin. Taken together, our studies suggest that Vpu hijacks the FLNa function in the modulation of tetherin to neutralize the antiviral factor tetherin. These findings may provide novel strategies for the treatment of HIV-1 infection.


Asunto(s)
Antígenos CD/biosíntesis , Filaminas/metabolismo , Regulación de la Expresión Génica , VIH-1/metabolismo , Proteínas del Virus de la Inmunodeficiencia Humana/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Liberación del Virus/fisiología , Antígenos CD/genética , Filaminas/genética , Proteínas Ligadas a GPI/biosíntesis , Proteínas Ligadas a GPI/genética , Células HEK293 , VIH-1/genética , Células HeLa , Proteínas del Virus de la Inmunodeficiencia Humana/genética , Humanos , Proteínas Reguladoras y Accesorias Virales/genética
2.
J Virol ; 86(20): 11242-53, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22875976

RESUMEN

Adaptor protein complex 3 (AP-3) is a heterotetramer that is involved in signal-mediated protein sorting to endosomal-lysosomal organelles. AP-3 deficiency in humans, induced by mutations in the AP3B1 gene, which encodes the ß3A subunit of the AP-3 complex, results in Hermansky-Pudlak syndrome 2 (HPS2), which is a rare genetic disorder with defective lysosome-related organelles. In a previous study, we identified the AP-3 complex as an important contributor to HIV-1 assembly and release. We hypothesized that cells from patients affected by HPS2 should demonstrate abnormalities of HIV-1 assembly. Here we report that HIV-1 particle assembly and release are indeed diminished in HPS2 fibroblast cultures. Transient or stable expression of the full-length wild-type ß3A subunit in HPS2 fibroblasts restored the impaired virus assembly and release. In contrast, virus-like particle release mediated by MA-deficient Gag mutants lacking the AP-3 binding site was not altered in HPS2 cells, indicating that the MA domain serves as the major viral determinant required for the recruitment of the AP-3 complex. AP-3 deficiency decreased HIV-1 Gag localization at the plasma membrane and late endosomes and increased the accumulation of HIV-1 Gag at an intermediate step between early and late endosomes. Blockage of the clathrin-mediated endocytic pathway in HPS2 cells did not reverse the inhibited virus assembly and release imposed by the AP-3 deficiency. These results demonstrate that the intact and stable AP-3 complex is required for HIV-1 assembly and release, and the involvement of the AP-3 complex in late stages of the HIV-1 replication cycle is independent of clathrin-mediated endocytosis.


Asunto(s)
Complejo 3 de Proteína Adaptadora/metabolismo , Subunidades delta de Complexo de Proteína Adaptadora/metabolismo , VIH-1/fisiología , Síndrome de Hermanski-Pudlak , Ensamble de Virus , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Complejo 3 de Proteína Adaptadora/deficiencia , Complejo 3 de Proteína Adaptadora/genética , Subunidades delta de Complexo de Proteína Adaptadora/deficiencia , Subunidades delta de Complexo de Proteína Adaptadora/genética , Membrana Celular/metabolismo , Membrana Celular/virología , Células Cultivadas , Clatrina/antagonistas & inhibidores , Endocitosis , Fibroblastos/virología , VIH-1/metabolismo , Síndrome de Hermanski-Pudlak/genética , Síndrome de Hermanski-Pudlak/metabolismo , Síndrome de Hermanski-Pudlak/virología , Humanos , Mutación , Transducción de Señal , Piel/virología , Liberación del Virus/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética
3.
J Biol Chem ; 286(32): 28498-510, 2011 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-21705339

RESUMEN

HIV-1 Gag precursor directs virus particle assembly and release. In a search for Gag-interacting proteins that are involved in late stages of the HIV-1 replication cycle, we performed yeast two-hybrid screening against a human cDNA library and identified the non-muscle actin filament cross-linking protein filamin A as a novel Gag binding partner. The 280-kDa filamin A regulates cortical actin network dynamics and participates in the anchoring of membrane proteins to the actin cytoskeleton. Recent studies have shown that filamin A facilitates HIV-1 cell-to-cell transmission by binding to HIV receptors and coreceptors and regulating their clustering on the target cell surface. Here we report a novel role for filamin A in HIV-1 Gag intracellular trafficking. We demonstrate that filamin A interacts with the capsid domain of HIV-1 Gag and that this interaction is involved in particle release in a productive manner. Disruption of this interaction eliminated Gag localization at the plasma membrane and induced Gag accumulation within internal compartments. Moreover, blocking clathrin-dependent endocytic pathways did not relieve the restriction to particle release induced by filamin A depletion. These results suggest that filamin A is involved in the distinct step of the Gag trafficking pathway. The discovery of the Gag-filamin A interaction may provide a new therapeutic target for the treatment of HIV infection.


Asunto(s)
Proteínas Contráctiles/metabolismo , Infecciones por VIH/mortalidad , VIH-1/fisiología , Proteínas de Microfilamentos/metabolismo , Ensamble de Virus/fisiología , Clatrina/genética , Clatrina/metabolismo , Proteínas Contráctiles/genética , Endocitosis/genética , Filaminas , Biblioteca de Genes , Infecciones por VIH/genética , Infecciones por VIH/transmisión , VIH-1/patogenicidad , Células HeLa , Humanos , Proteínas de Microfilamentos/genética , Transporte de Proteínas/genética , Saccharomyces cerevisiae , Técnicas del Sistema de Dos Híbridos , Ensamble de Virus/efectos de los fármacos , Productos del Gen gag del Virus de la Inmunodeficiencia Humana
4.
J Cell Sci ; 123(Pt 19): 3303-15, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20826458

RESUMEN

A systematic Drosophila forward genetic screen for photoreceptor synaptic transmission mutants identified no-on-and-no-off transient C (nonC) based on loss of retinal synaptic responses to light stimulation. The cloned gene encodes phosphatidylinositol-3-kinase-like kinase (PIKK) Smg1, a regulatory kinase of the nonsense-mediated decay (NMD) pathway. The Smg proteins act in an mRNA quality control surveillance mechanism to selectively degrade transcripts containing premature stop codons, thereby preventing the translation of truncated proteins with dominant-negative or deleterious gain-of-function activities. At the neuromuscular junction (NMJ) synapse, an extended allelic series of Smg1 mutants show impaired structural architecture, with decreased terminal arbor size, branching and synaptic bouton number. Functionally, loss of Smg1 results in a ~50% reduction in basal neurotransmission strength, as well as progressive transmission fatigue and greatly impaired synaptic vesicle recycling during high-frequency stimulation. Mutation of other NMD pathways genes (Upf2 and Smg6) similarly impairs neurotransmission and synaptic vesicle cycling. These findings suggest that the NMD pathway acts to regulate proper mRNA translation to safeguard synapse morphology and maintain the efficacy of synaptic function.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Células Fotorreceptoras de Invertebrados/metabolismo , Terminales Presinápticos/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Proteínas de Drosophila/genética , Prueba de Complementación Genética , Pruebas Genéticas , Fototransducción/genética , Morfogénesis/genética , Unión Neuromuscular/fisiología , Células Fotorreceptoras de Invertebrados/patología , Terminales Presinápticos/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Retina/crecimiento & desarrollo , Retina/patología , Eliminación de Secuencia/genética , Transmisión Sináptica/genética , Vesículas Sinápticas/genética , Vesículas Sinápticas/patología
5.
Dis Model Mech ; 3(7-8): 471-85, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20442204

RESUMEN

Fragile X syndrome (FXS), resulting solely from the loss of function of the human fragile X mental retardation 1 (hFMR1) gene, is the most common heritable cause of mental retardation and autism disorders, with syndromic defects also in non-neuronal tissues. In addition, the human genome encodes two closely related hFMR1 paralogs: hFXR1 and hFXR2. The Drosophila genome, by contrast, encodes a single dFMR1 gene with close sequence homology to all three human genes. Drosophila that lack the dFMR1 gene (dfmr1 null mutants) recapitulate FXS-associated molecular, cellular and behavioral phenotypes, suggesting that FMR1 function has been conserved, albeit with specific functions possibly sub-served by the expanded human gene family. To test evolutionary conservation, we used tissue-targeted transgenic expression of all three human genes in the Drosophila disease model to investigate function at (1) molecular, (2) neuronal and (3) non-neuronal levels. In neurons, dfmr1 null mutants exhibit elevated protein levels that alter the central brain and neuromuscular junction (NMJ) synaptic architecture, including an increase in synapse area, branching and bouton numbers. Importantly, hFMR1 can, comparably to dFMR1, fully rescue both the molecular and cellular defects in neurons, whereas hFXR1 and hFXR2 provide absolutely no rescue. For non-neuronal requirements, we assayed male fecundity and testes function. dfmr1 null mutants are effectively sterile owing to disruption of the 9+2 microtubule organization in the sperm tail. Importantly, all three human genes fully and equally rescue mutant fecundity and spermatogenesis defects. These results indicate that FMR1 gene function is evolutionarily conserved in neural mechanisms and cannot be compensated by either FXR1 or FXR2, but that all three proteins can substitute for each other in non-neuronal requirements. We conclude that FMR1 has a neural-specific function that is distinct from its paralogs, and that the unique FMR1 function is responsible for regulating neuronal protein expression and synaptic connectivity.


Asunto(s)
Secuencia Conservada/genética , Drosophila melanogaster/metabolismo , Evolución Molecular , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Neuronas/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Animales Modificados Genéticamente , Encéfalo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/ultraestructura , Fertilidad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Humanos , Masculino , Mutación/genética , Red Nerviosa/metabolismo , Unión Neuromuscular/metabolismo , Espermatogénesis , Sinapsis/metabolismo , Testículo/metabolismo , Testículo/ultraestructura
6.
Proc Natl Acad Sci U S A ; 107(7): 3169-74, 2010 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-20133767

RESUMEN

Neuropathology involving TAR DNA binding protein-43 (TDP-43) has been identified in a wide spectrum of neurodegenerative diseases collectively named as TDP-43 proteinopathy, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD). To test whether increased expression of wide-type human TDP-43 (hTDP-43) may cause neurotoxicity in vivo, we generated transgenic flies expressing hTDP-43 in various neuronal subpopulations. Expression in the fly eyes of the full-length hTDP-43, but not a mutant lacking its amino-terminal domain, led to progressive loss of ommatidia with remarkable signs of neurodegeneration. Expressing hTDP-43 in mushroom bodies (MBs) resulted in dramatic axon losses and neuronal death. Furthermore, hTDP-43 expression in motor neurons led to axon swelling, reduction in axon branches and bouton numbers, and motor neuron loss together with functional deficits. Thus, our transgenic flies expressing hTDP-43 recapitulate important neuropathological and clinical features of human TDP-43 proteinopathy, providing a powerful animal model for this group of devastating diseases. Our study indicates that simply increasing hTDP-43 expression is sufficient to cause neurotoxicity in vivo, suggesting that aberrant regulation of TDP-43 expression or decreased clearance of hTDP-43 may contribute to the pathogenesis of TDP-43 proteinopathy.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Drosophila , Neuronas/metabolismo , Degeneración Retiniana/metabolismo , Proteinopatías TDP-43/metabolismo , Animales , Animales Modificados Genéticamente , Humanos , Proteínas Luminiscentes/metabolismo , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Cuerpos Pedunculados/metabolismo , Neuronas/ultraestructura , Degeneración Retiniana/etiología , Proteinopatías TDP-43/complicaciones , Proteína Fluorescente Roja
7.
Protein Cell ; 1(3): 267-74, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21203973

RESUMEN

Retinitis pigmentosa is a leading cause of blindness and a progressive retinal disorder, affecting millions of people worldwide. This disease is characterized by photoreceptor degeneration, eventually leading to complete blindness. Autosomal dominant (adRP) has been associated with mutations in at least four ubiquitously expressed genes encoding pre-mRNA splicing factors-Prp3, Prp8, Prp31 and PAP1. Biological function of adRP-associated splicing factor genes and molecular mechanisms by which mutations in these genes cause cell-type specific photoreceptor degeneration in humans remain to be elucidated. To investigate the in vivo function of these adRP-associated splicing factor genes, we examined Drosophila in which expression of fly Prp31 homolog was down-regulated. Sequence analyses show that CG6876 is the likely candidate of Drosophila melanogaster Prp31 homolog (DmPrp31). Predicted peptide sequence for CG6876 shows 57% similarity to the Homo sapiens Prp31 protein (HsPrp31). Reduction of the endogenous Prp31 by RNAi-mediated knockdown specifically in the eye leads to reduction of eye size or complete absence of eyes with remarkable features of photoreceptor degeneration and recapitulates the bimodal expressivity of human Prp31 mutations in adRP patients. Such transgenic DmPrp31RNAi flies provide a useful tool for identifying genetic modifiers or interacting genes for Prp31. Expression of the human Prp31 in these animals leads to a partial rescue of the eye phenotype. Our results indicate that the Drosophila CG6876 is the fly ortholog of mammalian Prp31 gene.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/crecimiento & desarrollo , Proteínas del Ojo/fisiología , Células Fotorreceptoras de Invertebrados/fisiología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Cartilla de ADN/genética , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Anomalías del Ojo/genética , Proteínas del Ojo/antagonistas & inhibidores , Proteínas del Ojo/genética , Técnicas de Silenciamiento del Gen , Genes de Insecto , Humanos , Datos de Secuencia Molecular , Proteínas Asociadas a Pancreatitis , Interferencia de ARN , Empalme del ARN , Homología de Secuencia de Aminoácido
8.
J Cell Sci ; 122(Pt 1): 114-25, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19066280

RESUMEN

Rolling blackout (RBO) is a Drosophila EFR3 integral membrane lipase. A conditional temperature-sensitive (TS) mutant (rbo(ts)) displays paralysis within minutes following a temperature shift from 25 degrees C to 37 degrees C, an impairment previously attributed solely to blocked synaptic-vesicle exocytosis. However, we found that rbo(ts) displays a strong synergistic interaction with the Syntaxin-1A TS allele syx(3-69), recently shown to be a dominant positive mutant that increases Syntaxin-1A function. At neuromuscular synapses, rbo(ts) showed a strong defect in styryl-FM-dye (FM) endocytosis, and rbo(ts);syx(3-69) double mutants displayed a synergistic, more severe, endocytosis impairment. Similarly, central rbo(ts) synapses in primary brain culture showed severely defective FM endocytosis. Non-neuronal nephrocyte Garland cells showed the same endocytosis defect in tracer-uptake assays. Ultrastructurally, rbo(ts) displayed a specific defect in tracer uptake into endosomes in both neuronal and non-neuronal cells. At the rbo(ts) synapse, there was a total blockade of endosome formation via activity-dependent bulk endocytosis. Clathrin-mediated endocytosis was not affected; indeed, there was a significant increase in direct vesicle formation. Together, these results demonstrate that RBO is required for constitutive and/or bulk endocytosis and/or macropinocytosis in both neuronal and non-neuronal cells, and that, at the synapse, this mechanism is responsive to the rate of Syntaxin-1A-dependent exocytosis.


Asunto(s)
Hidrolasas de Éster Carboxílico/metabolismo , Proteínas de Drosophila/metabolismo , Endocitosis/fisiología , Proteínas de la Membrana/metabolismo , Neuronas , Sinapsis/metabolismo , Animales , Animales Modificados Genéticamente , Encéfalo/citología , Encéfalo/metabolismo , Hidrolasas de Éster Carboxílico/genética , Células Cultivadas , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Endosomas/metabolismo , Endosomas/ultraestructura , Proteínas de la Membrana/genética , Unión Neuromuscular/metabolismo , Unión Neuromuscular/ultraestructura , Neuronas/citología , Neuronas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Sinapsis/ultraestructura
9.
Peptides ; 29(12): 2276-80, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18848852

RESUMEN

Numerous neurosecretory cells are known to secrete more than one peptide, in both vertebrates and invertebrates. These co-expressed neuropeptides often originate from differential cleavage of a single large precursor, and are then usually sorted in the regulated pathway into different secretory vesicle classes to allow separable release dynamics. Here, we use immuno-gold electron microscopy to show that two very different neuropeptides (the nonapeptide crustacean cardioactive peptide (CCAP) and the 30 kDa heterodimeric bursicon) are co-packaged within the same dense core vesicles in neurosecretory neurons in the abdominal ganglia of Periplaneta americana. We suggest that this co-packaging serves a physiological function in which CCAP accelerates the distribution of bursicon to the epidermis after ecdysis to regulate sclerotization of the newly formed cuticle.


Asunto(s)
Ganglios de Invertebrados/metabolismo , Hormonas de Invertebrados/metabolismo , Neuropéptidos/metabolismo , Periplaneta/metabolismo , Vesículas Secretoras/metabolismo , Animales , Ganglios de Invertebrados/ultraestructura , Larva/metabolismo , Larva/ultraestructura , Microscopía Inmunoelectrónica , Neuronas/metabolismo , Neuronas/ultraestructura , Periplaneta/ultraestructura , Vesículas Secretoras/ultraestructura
10.
J Neurosci ; 28(14): 3668-82, 2008 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-18385325

RESUMEN

A systematic forward genetic Drosophila screen for electroretinogram mutants lacking synaptic transients identified the fuseless (fusl) gene, which encodes a predicted eight-pass transmembrane protein in the presynaptic membrane. Null fusl mutants display >75% reduction in evoked synaptic transmission but, conversely, an approximately threefold increase in the frequency and amplitude of spontaneous synaptic vesicle fusion events. These neurotransmission defects are rescued by a wild-type fusl transgene targeted only to the presynaptic cell, demonstrating a strictly presynaptic requirement for Fusl function. Defects in FM dye turnover at the synapse show a severely impaired exo-endo synaptic vesicle cycling pool. Consistently, ultrastructural analyses reveal accumulated vesicles arrested in clustered and docked pools at presynaptic active zones. In the absence of Fusl, calcium-dependent neurotransmitter release is dramatically compromised and there is little enhancement of synaptic efficacy with elevated external Ca(2+) concentrations. These defects are causally linked with severe loss of the Cacophony voltage-gated Ca(2+) channels, which fail to localize normally at presynaptic active zone domains in the absence of Fusl. These data indicate that Fusl regulates assembly of the presynaptic active zone Ca(2+) channel domains required for efficient coupling of the Ca(2+) influx and synaptic vesicle exocytosis during neurotransmission.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Proteínas de Drosophila/fisiología , Exocitosis/fisiología , Terminales Presinápticos/metabolismo , Vesículas Sinápticas/fisiología , Animales , Animales Modificados Genéticamente , Membrana Celular/fisiología , Drosophila , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Electrorretinografía/métodos , Embrión no Mamífero , Potenciales Evocados Visuales/fisiología , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de la Membrana/fisiología , Análisis por Micromatrices , Mutación/fisiología , Proteínas del Tejido Nervioso/fisiología , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/fisiología , Unión Neuromuscular/ultraestructura , Técnicas de Placa-Clamp/métodos , Estimulación Luminosa/métodos , Terminales Presinápticos/ultraestructura , Interferencia de ARN/fisiología , Transmisión Sináptica/fisiología , Visión Ocular/genética , Vías Visuales/anatomía & histología , Vías Visuales/metabolismo
11.
Mol Cell Neurosci ; 37(4): 747-60, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18280750

RESUMEN

Fragile X syndrome is caused by loss of the FMRP translational regulator. A current hypothesis proposes that FMRP functions downstream of mGluR signaling to regulate synaptic connections. Using the Drosophila disease model, we test relationships between dFMRP and the sole Drosophila mGluR (DmGluRA) by assaying protein expression, behavior and neuron structure in brain and NMJ; in single mutants, double mutants and with an mGluR antagonist. At the protein level, dFMRP is upregulated in dmGluRA mutants, and DmGluRA is upregulated in dfmr1 mutants, demonstrating mutual negative feedback. Null dmGluRA mutants display defects in coordinated movement behavior, which are rescued by removing dFMRP expression. Null dfmr1 mutants display increased NMJ presynaptic structural complexity and elevated presynaptic vesicle pools, which are rescued by blocking mGluR signaling. Null dfmr1 brain neurons similarly display increased presynaptic architectural complexity, which is rescued by blocking mGluR signaling. These data show that DmGluRA and dFMRP convergently regulate presynaptic properties.


Asunto(s)
Proteínas de Drosophila/fisiología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Unión Neuromuscular/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Transducción de Señal/fisiología , Animales , Conducta Animal/fisiología , Drosophila , Proteínas de Drosophila/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Movimiento/fisiología , Mutación , Unión Neuromuscular/ultraestructura , Receptores de Glutamato Metabotrópico/genética , Transducción de Señal/genética
12.
Nat Neurosci ; 11(2): 143-51, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18176560

RESUMEN

Motor function requires that motor axons extend from the spinal cord at regular intervals and that they are myelinated by Schwann cells. Little attention has been given to another cellular structure, the perineurium, which ensheaths the motor nerve, forming a flexible, protective barrier. Consequently, the origin of perineurial cells and their roles in motor nerve formation are poorly understood. Using time-lapse imaging in zebrafish, we show that perineurial cells are born in the CNS, arising as ventral spinal-cord glia before migrating into the periphery. In embryos lacking perineurial glia, motor neurons inappropriately migrated outside of the spinal cord and had aberrant axonal projections, indicating that perineurial glia carry out barrier and guidance functions at motor axon exit points. Additionally, reciprocal signaling between perineurial glia and Schwann cells was necessary for motor nerve ensheathment by both cell types. These insights reveal a new class of CNS-born glia that critically contributes to motor nerve development.


Asunto(s)
Axones/fisiología , Sistema Nervioso Central/citología , Neuronas Motoras/fisiología , Vaina de Mielina/fisiología , Neuroglía/fisiología , Nervios Periféricos/fisiología , Animales , Animales Modificados Genéticamente , Diferenciación Celular , Embrión no Mamífero , Peces , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Electrónica de Transmisión , Morfolinas/farmacología , Vaina de Mielina/ultraestructura , Neuroglía/ultraestructura , Nervios Periféricos/citología , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Células de Schwann/fisiología , Células de Schwann/ultraestructura , Médula Espinal/citología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Alcaloides de Veratrum/farmacología , Proteínas de Pez Cebra/genética , Proteína de la Zonula Occludens-1
13.
Genes Dev ; 21(20): 2607-28, 2007 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-17901219

RESUMEN

Formation and regulation of excitatory glutamatergic synapses is essential for shaping neural circuits throughout development. In a Drosophila genetic screen for synaptogenesis mutants, we identified mind the gap (mtg), which encodes a secreted, extracellular N-glycosaminoglycan-binding protein. MTG is expressed neuronally and detected in the synaptic cleft, and is required to form the specialized transsynaptic matrix that links the presynaptic active zone with the post-synaptic glutamate receptor (GluR) domain. Null mtg embryonic mutant synapses exhibit greatly reduced GluR function, and a corresponding loss of localized GluR domains. All known post-synaptic signaling/scaffold proteins functioning upstream of GluR localization are also grossly reduced or mislocalized in mtg mutants, including the dPix-dPak-Dock cascade and the Dlg/PSD-95 scaffold. Ubiquitous or neuronally targeted mtg RNA interference (RNAi) similarly reduce post-synaptic assembly, whereas post-synaptically targeted RNAi has no effect, indicating that presynaptic MTG induces and maintains the post-synaptic pathways driving GluR domain formation. These findings suggest that MTG is secreted from the presynaptic terminal to shape the extracellular synaptic cleft domain, and that the cleft domain functions to mediate transsynaptic signals required for post-synaptic development.


Asunto(s)
Drosophila/embriología , Sinapsis/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Mapeo Cromosómico , Cartilla de ADN/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Matriz Extracelular/metabolismo , Genes de Insecto , Glicosaminoglicanos/metabolismo , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Mutación , Unión Neuromuscular/embriología , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Interferencia de ARN , Receptores de Glutamato/metabolismo , Homología de Secuencia de Aminoácido , Sinapsis/ultraestructura
14.
Biol Cell ; 99(11): 615-26, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17523916

RESUMEN

BACKGROUND INFORMATION: Protein degradation via the UPS (ubiquitin-proteasome system) plays critical roles in muscle metabolism and signalling pathways. The present study investigates temporal requirements of the UPS in muscle using conditional expression of mutant proteasome beta subunits to cause targeted inhibition of proteasome function. RESULTS AND CONCLUSIONS: The Drosophila GeneSwitch system was used, with analyses of the well-characterized larval somatic body wall muscles. This method acutely disrupts proteasome function and causes rapid accumulation of polyubiquitinated proteins, specifically within the muscle. Within 12 h of transgenic proteasome inhibition, there was a gross disorganization of muscle architecture and prominent muscle atrophy, progressing to the arrest of all co-ordinated movement by 24 h. Progressive muscle architecture changes include rapid loss of sarcomere organization, loss of nuclei spacing/patterning, vacuole formation and the accumulation of nuclear and cytoplasmic aggregates at the ultrastructural level. At the neuromuscular junction, the highly specialized muscle membrane folds of the subsynaptic reticulum were rapidly lost. Within 24 h after transgenic proteasome inhibition, muscles contained numerous autophagosomes and displayed highly elevated expression of the endoplasmic reticulum chaperone GRP78 (glucose-regulated protein of 78 kDa), indicating that the loss of muscle maintenance correlates with induction of the unfolded protein response. Taken together, these results demonstrate that the UPS is acutely required for maintenance of muscle and neuromuscular junction architecture, and provides a Drosophila genetic model to mechanistically evaluate this requirement.


Asunto(s)
Proteínas de Drosophila/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Subunidades de Proteína/biosíntesis , Sarcómeros/enzimología , Ubiquitina/metabolismo , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/metabolismo , Membrana Celular/enzimología , Membrana Celular/genética , Membrana Celular/patología , Núcleo Celular/enzimología , Núcleo Celular/genética , Núcleo Celular/patología , Citoplasma/enzimología , Citoplasma/genética , Citoplasma/patología , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Drosophila melanogaster , Chaperón BiP del Retículo Endoplásmico , Proteínas de Choque Térmico/biosíntesis , Proteínas de Choque Térmico/genética , Larva/enzimología , Larva/genética , Modelos Genéticos , Chaperonas Moleculares/biosíntesis , Chaperonas Moleculares/genética , Unión Neuromuscular/enzimología , Unión Neuromuscular/patología , Complejo de la Endopetidasa Proteasomal/genética , Inhibidores de Proteasoma , Subunidades de Proteína/genética , Sarcómeros/patología , Ubiquitina/genética
15.
J Neurosci ; 26(9): 2369-79, 2006 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-16510714

RESUMEN

Rolling blackout (RBO) is a putative transmembrane lipase required for phospholipase C-dependent phosphatidylinositol 4,5-bisphosphate-diacylglycerol signaling in Drosophila neurons. Conditional temperature-sensitive (TS) rbo mutants display complete, reversible paralysis within minutes, demonstrating that RBO is acutely required for movement. RBO protein is localized predominantly in presynaptic boutons at neuromuscular junction (NMJ) synapses and throughout central synaptic neuropil, and rbo TS mutants display a complete, reversible block of both central and peripheral synaptic transmission within minutes. This phenotype appears limited to adults, because larval NMJs do not manifest the acute blockade. Electron microscopy of adult rbo TS mutant boutons reveals an increase in total synaptic vesicle (SV) content, with a concomitant shrinkage of presynaptic bouton size and an accumulation of docked SVs at presynaptic active zones within minutes. Genetic tests reveal a synergistic interaction between rbo and syntaxin1A TS mutants, suggesting that RBO is required in the mechanism of N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated SV exocytosis, or in a parallel pathway necessary for SV fusion. The rbo TS mutation does not detectably alter SNARE complex assembly, suggesting a downstream requirement in SV fusion. We conclude that RBO plays an essential role in neurotransmitter release, downstream of SV docking, likely mediating SV fusion.


Asunto(s)
Hidrolasas de Éster Carboxílico/fisiología , Proteínas de Drosophila/fisiología , Exocitosis/fisiología , Transmisión Sináptica/fisiología , Vesículas Sinápticas/fisiología , Sensación Térmica/fisiología , Animales , Animales Modificados Genéticamente , Conducta Animal , Western Blotting/métodos , Proteínas de Caenorhabditis elegans/metabolismo , Hidrolasas de Éster Carboxílico/genética , Proteínas Portadoras , Diagnóstico por Imagen/métodos , Relación Dosis-Respuesta en la Radiación , Proteínas de Drosophila/genética , Estimulación Eléctrica/métodos , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Excitadores/efectos de la radiación , Femenino , Peroxidasa de Rábano Silvestre/metabolismo , Inmunohistoquímica/métodos , Larva , Masculino , Microscopía Electrónica de Transmisión/métodos , Modelos Neurológicos , Movimiento/fisiología , Mutación/fisiología , Fibras Nerviosas/fisiología , Fibras Nerviosas/efectos de la radiación , Unión Neuromuscular/genética , Unión Neuromuscular/fisiología , Unión Neuromuscular/efectos de la radiación , Unión Neuromuscular/ultraestructura , Tiempo de Reacción/fisiología , Tiempo de Reacción/efectos de la radiación , Proteínas SNARE/metabolismo , Transmisión Sináptica/genética , Vesículas Sinápticas/ultraestructura , Sensación Térmica/genética , Factores de Tiempo
16.
Cell ; 120(5): 663-74, 2005 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-15766529

RESUMEN

Gag proteins direct the process of retroviral particle assembly and form the major protein constituents of the viral core. The matrix region of the HIV-1 Gag polyprotein plays a critical role in the transport of Gag to the plasma membrane assembly site. Recent evidence indicates that Gag trafficking to late endosomal compartments, including multivesicular bodies, occurs prior to viral particle budding from the plasma membrane. Here we demonstrate that the matrix region of HIV-1 Gag interacts directly with the delta subunit of the AP-3 complex, and that this interaction plays an important functional role in particle assembly. Disruption of this interaction eliminated Gag trafficking to multivesicular bodies and diminished HIV particle formation. These studies illuminate an early step in retroviral particle assembly and provide evidence that the trafficking of Gag to late endosomes is part of a productive particle assembly pathway.


Asunto(s)
Complejo 3 de Proteína Adaptadora/metabolismo , Endosomas/metabolismo , Productos del Gen gag/metabolismo , VIH-1/metabolismo , Ensamble de Virus/fisiología , Subunidades delta de Complexo de Proteína Adaptadora/metabolismo , Endosomas/ultraestructura , Endosomas/virología , VIH-1/ultraestructura , Células HeLa , Humanos , Microscopía Electrónica de Transmisión , Unión Proteica/fisiología , Estructura Terciaria de Proteína/fisiología , Subunidades de Proteína/metabolismo , Transporte de Proteínas/fisiología , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/ultraestructura , Vesículas Transportadoras/virología
17.
Mol Cell Proteomics ; 4(3): 278-90, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15634690

RESUMEN

Fragile X syndrome is the most common form of inherited mental retardation, associated with both cognitive and behavioral anomalies. The disease is caused by silencing of the fragile X mental retardation 1 (fmr1) gene, which encodes the mRNA-binding, translational regulator FMRP. Previously we established a disease model through mutation of Drosophila fmr1 (dfmr1) and showed that loss of dFMRP causes defects in neuronal structure, function, and behavioral output similar to the human disease state. To uncover molecular targets of dFMRP in the brain, we use here a proteomic approach involving two-dimensional difference gel electrophoresis analyses followed by mass spectrometry identification of proteins with significantly altered expression in dfmr1 null mutants. We then focus on two misregulated enzymes, phenylalanine hydroxylase (Henna) and GTP cyclohydrolase (Punch), both of which mediate in concert the synthetic pathways of two key monoamine neuromodulators, dopamine and serotonin. Brain enzymatic assays show a nearly 2-fold elevation of Punch activity in dfmr1 null mutants. Consistently brain neurochemical assays show that both dopamine and serotonin are significantly increased in dfmr1 null mutants. At a cellular level, dfmr1 null mutant neurons display a highly significant elevation of the dense core vesicles that package these monoamine neuromodulators for secretion. Taken together, these data indicate that dFMRP normally down-regulates the monoamine pathway, which is consequently up-regulated in the mutant condition. Elevated brain levels of dopamine and serotonin provide a plausible mechanistic explanation for aspects of cognitive and behavioral deficits in human patients.


Asunto(s)
Dopamina/biosíntesis , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/genética , Proteínas de Unión al ARN/genética , Serotonina/biosíntesis , Animales , Encéfalo/metabolismo , Drosophila , Electroforesis en Gel Bidimensional , Metabolismo Energético , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil/genética , GTP Ciclohidrolasa/biosíntesis , Perfilación de la Expresión Génica , Masculino , Espectrometría de Masas , Mutación , Fenilalanina Hidroxilasa/biosíntesis , Proteómica , Regulación hacia Arriba
18.
Curr Biol ; 14(20): 1863-70, 2004 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-15498496

RESUMEN

Fragile X Syndrome (FraX) is the most common form of inherited mental retardation. The disease is caused by the silencing of the fragile X mental retardation 1 (fmr1) gene, which encodes the RNA binding translational regulator FMRP . In FraX patients and fmr1 knockout mice, loss of FMRP causes denser and morphologically altered postsynaptic dendritic spines . Previously, we established a Drosophila FraX model and showed that dFMRP acts as a negative translational regulator of Futsch/MAP1B and negatively regulates synaptic branching and structural elaboration in the peripheral neuromuscular junction (NMJ) . Here, we investigate the role of dFMRP in the central brain, focusing on the mushroom body (MB), the learning and memory center . In MB neurons, dFMRP bidirectionally regulates multiple levels of structural architecture, including process formation from the soma, dendritic elaboration, axonal branching, and synaptogenesis. Drosophila fmr1 (dfmr) null mutant neurons display more complex architecture, including overgrowth, overbranching, and abnormal synapse formation. In contrast, dFMRP overexpression simplifies neuronal structure, causing undergrowth, underbranching, and loss of synapse differentiation. Studies of ultrastructural dfmr mutant neurons reveal enlarged and irregular synaptic boutons with dense accumulation of synaptic vesicles. Taken together, these data show that dFMRP is a potent negative regulator of neuronal architecture and synaptic differentiation in both peripheral and central nervous systems.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/genética , Síndrome del Cromosoma X Frágil/genética , Regulación de la Expresión Génica , Cuerpos Pedunculados/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Inmunohistoquímica , Microscopía Electrónica de Transmisión , Cuerpos Pedunculados/ultraestructura , Proteínas del Tejido Nervioso/genética , Terminales Presinápticos/ultraestructura , Proteínas de Unión al ARN/genética
19.
J Neurosci ; 24(36): 7789-803, 2004 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-15356190

RESUMEN

A screen for Drosophila synaptic dysfunction mutants identified slug-a-bed (slab). The slab gene encodes ceramidase, a central enzyme in sphingolipid metabolism and regulation. Sphingolipids are major constituents of lipid rafts, membrane domains with roles in vesicle trafficking, and signaling pathways. Null slab mutants arrest as fully developed embryos with severely reduced movement. The SLAB protein is widely expressed in different tissues but enriched in neurons at all stages of development. Targeted neuronal expression of slab rescues mutant lethality, demonstrating the essential neuronal function of the protein. C(5)-ceramide applied to living preparations is rapidly accumulated at neuromuscular junction (NMJ) synapses dependent on the SLAB expression level, indicating that synaptic sphingolipid trafficking and distribution is regulated by SLAB function. Evoked synaptic currents at slab mutant NMJs are reduced by 50-70%, whereas postsynaptic glutamate-gated currents are normal, demonstrating a specific presynaptic impairment. Hypertonic saline-evoked synaptic vesicle fusion is similarly impaired by 50-70%, demonstrating a loss of readily releasable vesicles. In addition, FM1-43 dye uptake is reduced in slab mutant presynaptic terminals, indicating a smaller cycling vesicle pool. Ultrastructural analyses of mutants reveal a normal vesicle distribution clustered and docked at active zones, but fewer vesicles in reserve regions, and a twofold to threefold increased incidence of vesicles linked together and tethered at the plasma membrane. These results indicate that SLAB ceramidase function controls presynaptic terminal sphingolipid composition to regulate vesicle fusion and trafficking, and thus the strength and reliability of synaptic transmission.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/enzimología , Exocitosis/fisiología , Proteínas del Tejido Nervioso/fisiología , Esfingolípidos/metabolismo , Transmisión Sináptica/fisiología , Animales , Animales Modificados Genéticamente , Apoptosis , Membrana Celular/ultraestructura , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Embrión no Mamífero/fisiología , Colorantes Fluorescentes/farmacocinética , Larva/fisiología , Locomoción/fisiología , Fusión de Membrana , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Unión Neuromuscular/química , Unión Neuromuscular/ultraestructura , Técnicas de Placa-Clamp , Compuestos de Piridinio/farmacocinética , Compuestos de Amonio Cuaternario/farmacocinética , Receptores Presinapticos/fisiología , Eliminación de Secuencia , Vesículas Sinápticas/ultraestructura
20.
Dev Biol ; 270(2): 290-307, 2004 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-15183715

RESUMEN

Macroorchidism (i.e., enlarged testicles) and mental retardation are the two hallmark symptoms of Fragile X syndrome (FraX). The disease is caused by loss of fragile X mental retardation protein (FMRP), an RNA-binding translational regulator. We previously established a FraX model in Drosophila, showing that the fly FMRP homologue, dFXR, acts as a negative translational regulator of microtubule-associated Futsch to control stability of the microtubule cytoskeleton during nervous system development. Here, we investigate dFXR function in the testes. Male dfxr null mutants have the enlarged testes characteristic of the disease and are nearly sterile (>90% reduced male fecundity). dFXR protein is highly enriched in Drosophila testes, particularly in spermatogenic cells during the early stages of spermatogenesis. Cytological analyses reveal that spermatogenesis is arrested specifically in late-stage spermatid differentiation following individualization. Ultrastructurally, dfxr mutants lose specifically the central pair microtubules in the sperm tail axoneme. The frequency of central pair microtubule loss becomes progressively greater as spermatogenesis progresses, suggesting that dFXR regulates microtubule stability. Proteomic analyses reveal that chaperones Hsp60B-, Hsp68-, Hsp90-related protein TRAP1, and other proteins have altered expression in dfxr mutant testes. Taken together with our previous nervous system results, these data suggest a common model in which dFXR regulates microtubule stability in both synaptogenesis in the nervous system and spermatogenesis in the testes. The characterization of dfxr function in the testes paves the way to genetic screens for modifiers of dfxr-induced male sterility, as a means to efficiently dissect FMRP-mediated mechanisms.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/genética , Síndrome del Cromosoma X Frágil/genética , Microtúbulos/fisiología , Proteínas de Unión al ARN/genética , Espermatogénesis/fisiología , Testículo/fisiología , Animales , Western Blotting , Modelos Animales de Enfermedad , Drosophila/fisiología , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Electroforesis en Gel Bidimensional , Electroforesis en Gel de Poliacrilamida , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Inmunohistoquímica , Masculino , Microscopía Confocal , Microscopía Electrónica , Microtúbulos/diagnóstico por imagen , Chaperonas Moleculares/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/fisiología , Cola del Espermatozoide/diagnóstico por imagen , Espermatogénesis/genética , Testículo/metabolismo , Testículo/ultraestructura , Ultrasonografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...