Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
mSystems ; 9(6): e0141523, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38819130

RESUMEN

Wastewater surveillance has emerged as a crucial public health tool for population-level pathogen surveillance. Supported by funding from the American Rescue Plan Act of 2021, the FDA's genomic epidemiology program, GenomeTrakr, was leveraged to sequence SARS-CoV-2 from wastewater sites across the United States. This initiative required the evaluation, optimization, development, and publication of new methods and analytical tools spanning sample collection through variant analyses. Version-controlled protocols for each step of the process were developed and published on protocols.io. A custom data analysis tool and a publicly accessible dashboard were built to facilitate real-time visualization of the collected data, focusing on the relative abundance of SARS-CoV-2 variants and sub-lineages across different samples and sites throughout the project. From September 2021 through June 2023, a total of 3,389 wastewater samples were collected, with 2,517 undergoing sequencing and submission to NCBI under the umbrella BioProject, PRJNA757291. Sequence data were released with explicit quality control (QC) tags on all sequence records, communicating our confidence in the quality of data. Variant analysis revealed wide circulation of Delta in the fall of 2021 and captured the sweep of Omicron and subsequent diversification of this lineage through the end of the sampling period. This project successfully achieved two important goals for the FDA's GenomeTrakr program: first, contributing timely genomic data for the SARS-CoV-2 pandemic response, and second, establishing both capacity and best practices for culture-independent, population-level environmental surveillance for other pathogens of interest to the FDA. IMPORTANCE: This paper serves two primary objectives. First, it summarizes the genomic and contextual data collected during a Covid-19 pandemic response project, which utilized the FDA's laboratory network, traditionally employed for sequencing foodborne pathogens, for sequencing SARS-CoV-2 from wastewater samples. Second, it outlines best practices for gathering and organizing population-level next generation sequencing (NGS) data collected for culture-free, surveillance of pathogens sourced from environmental samples.


Asunto(s)
COVID-19 , SARS-CoV-2 , United States Food and Drug Administration , Aguas Residuales , SARS-CoV-2/genética , Estados Unidos/epidemiología , Aguas Residuales/virología , COVID-19/epidemiología , COVID-19/transmisión , COVID-19/prevención & control , COVID-19/virología , Humanos , Pandemias/prevención & control , Genoma Viral/genética , Monitoreo Epidemiológico Basado en Aguas Residuales
2.
Food Environ Virol ; 14(3): 236-245, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35871245

RESUMEN

Globally, hepatitis A virus (HAV) is one of the most common agents of acute viral hepatitis and causes approximately 1.4 million cases and 90,000 deaths annually despite the existence of an effective vaccine. In 2019, federal, state, and local partners investigated a multi-state outbreak of HAV infections linked to fresh blackberries sourced from multiple suppliers in Michoacán, Mexico. A total of 20 individuals with outbreak-related HAV infection were reported in seven states, including 11 hospitalizations, and no deaths. The Food and Drug Administration (FDA), the Centers for Disease Control and Prevention (CDC), and Nebraska State and Douglas County Health Departments conducted a traceback investigation for fresh blackberries reportedly purchased by 16 ill persons. These individuals reported purchasing fresh blackberries from 11 points of service from September 16 through 29, 2019 and their clinical isolates assessed through next-generation sequencing and phylogenetic analysis were genetically similar. The traceback investigation did not reveal convergence on a common grower or packing house within Mexico, but all of the blackberries were harvested from growers in Michoacán, Mexico. FDA did not detect the pathogen after analyzing fresh blackberry samples from four distributors, one consumer, and from nine importers at the port of entry as a result of increased screening. Challenges included gaps in traceability practices and the inability to recover the pathogen from sample testing, which prohibited investigators from determining the source of the implicated blackberries. This multi-state outbreak illustrated the importance of food safety practices for fresh produce that may contribute to foodborne illness outbreaks.


Asunto(s)
Enfermedades Transmitidas por los Alimentos , Virus de la Hepatitis A , Hepatitis A , Rubus , Brotes de Enfermedades , Enfermedades Transmitidas por los Alimentos/epidemiología , Hepatitis A/epidemiología , Virus de la Hepatitis A/genética , Humanos , Filogenia , Estados Unidos/epidemiología
3.
Risk Anal ; 42(2): 344-369, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34121216

RESUMEN

Human norovirus (NoV) is the leading cause of foodborne illness in the United States and Canada. Bivalve molluscan shellfish is one commodity commonly identified as being a vector of NoV. Bivalve molluscan shellfish are grown in waters that may be affected by contamination events, tend to bioaccumulate viruses, and are frequently eaten raw. In an effort to better assess the elements that contribute to potential risk of NoV infection and illness from consumption of bivalve molluscan shellfish, the U.S. Department of Health and Human Services/Food and Drug Administration (FDA), Health Canada (HC), the Canadian Food Inspection Agency (CFIA), and Environment and Climate Change Canada (ECCC) collaborated to conduct a quantitative risk assessment for NoV in bivalve molluscan shellfish, notably oysters. This study describes the model and scenarios developed and results obtained to assess the risk of NoV infection and illness from consumption of raw oysters harvested from a quasi-steady-state situation. Among the many factors that influence the risk of NoV illness for raw oyster consumers, the concentrations of NoV in the influent (raw, untreated) and effluent (treated) of wastewater treatment plants (WWTP) were identified to be the most important. Thus, mitigation and control strategies that limit the influence from human waste (WWTP outfalls) in oyster growing areas have a major influence on the risk of illness from consumption of those oysters.


Asunto(s)
Infecciones por Caliciviridae , Norovirus , Ostreidae , Animales , Infecciones por Caliciviridae/epidemiología , Canadá , Contaminación de Alimentos/análisis , Humanos , Medición de Riesgo , Estados Unidos
4.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34445583

RESUMEN

Aptamers, single-stranded oligonucleotides that specifically bind a molecule with high affinity, are used as ligands in analytical and therapeutic applications. For the foodborne pathogen norovirus, multiple aptamers exist but have not been thoroughly characterized. Consequently, there is little research on aptamer-mediated assay development. This study characterized seven previously described norovirus aptamers for target affinity, structure, and potential use in extraction and detection assays. Norovirus-aptamer affinities were determined by filter retention assays using norovirus genotype (G) I.1, GI.7, GII.3, GII.4 New Orleans and GII.4 Sydney virus-like particles. Of the seven aptamers characterized, equilibrium dissociation constants for GI.7, GII.3, GII.4 New Orleans and GII.4 Sydney ranged from 71 ± 38 to 1777 ± 1021 nM. Four aptamers exhibited affinity to norovirus GII.4 strains; three aptamers additionally exhibited affinity toward GII.3 and GI.7. Aptamer affinity towards GI.1 was not observed. Aptamer structure analysis by circular dichroism (CD) spectroscopy showed that six aptamers exhibit B-DNA structure, and one aptamer displays parallel/antiparallel G-quadruplex hybrid structure. CD studies also showed that biotinylated aptamer structures were unchanged from non-biotinylated aptamers. Finally, norovirus aptamer assay feasibility was demonstrated in dot-blot and pull-down assays. This characterization of existing aptamers provides a knowledge base for future aptamer-based norovirus detection and extraction assay development and aptamer modification.


Asunto(s)
Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Proteínas de la Cápside/metabolismo , Norovirus/metabolismo , Técnica SELEX de Producción de Aptámeros/métodos , Aptámeros de Nucleótidos/aislamiento & purificación , Bioensayo , Ligandos , Norovirus/química , Norovirus/genética
5.
Food Chem ; 258: 129-136, 2018 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-29655714

RESUMEN

This study investigates the enrichment of aptamers targeting the norovirus protruding domain in the presence of foods often associated with norovirus outbreaks. The goal is to explore if and how the presence of food alters in vitro selection of aptamers and target binding of the enriched oligonucleotides. Our study demonstrates that the introduction of food to SELEX (systematic evolution of ligands by exponential enrichment) is either detrimental to enrichment of oligonucleotides with target-specific binding, or facilitates enrichment of non-target-specific oligonucleotides. Moreover, a relationship between target binding of enriched oligonucleotides in presence of food and their selection condition was not observed. Our findings also suggest that a pathogen specific aptamer with application in food does not need to be selected in presence of the particular food, but may require properties beyond high affinity and selectivity to be applied for pathogen extraction and detection in undiluted food matrices.


Asunto(s)
Aptámeros de Nucleótidos/metabolismo , Proteínas de la Cápside/metabolismo , Alimentos/virología , Técnica SELEX de Producción de Aptámeros , Aptámeros de Nucleótidos/química , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Humanos , Ligandos , Norovirus/aislamiento & purificación , Norovirus/metabolismo , Dominios Proteicos/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación
6.
Appl Environ Microbiol ; 83(23)2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28939600

RESUMEN

This study examined the inactivation of human norovirus (HuNoV) GI.1 and GII.4 by chlorine under conditions mimicking sewage treatment. Using a porcine gastric mucin-magnetic bead (PGM-MB) assay, no statistically significant loss in HuNoV binding (inactivation) was observed for secondary effluent treatments of ≤25 ppm total chlorine; for both strains, 50 and 100 ppm treatments resulted in ≤0.8-log10 unit and ≥3.9-log10 unit reductions, respectively. Treatments of 10, 25, 50, and 100 ppm chlorine inactivated 0.31, 1.35, >5, and >5 log10 units, respectively, of the norovirus indicator MS2 bacteriophage. Evaluation of treatment time indicated that the vast majority of MS2 and HuNoV inactivation occurred in the first 5 min for 0.2-µm-filtered, prechlorinated secondary effluent. Free chlorine measurements of secondary effluent seeded with MS2 and HuNoV demonstrated substantial oxidative burdens. With 25, 50, and 100 ppm treatments, free chlorine levels after 5 min of exposure ranged from 0.21 to 0.58 ppm, from 0.28 to 16.7 ppm, and from 11.6 to 53 ppm, respectively. At chlorine treatment levels of >50 ppm, statistically significant differences were observed between reductions for PGM-MB-bound HuNoV (potentially infectious) particles and those for unbound (noninfectious) HuNoV particles or total norovirus particles. While results suggested that MS2 and HuNoV (measured as PGM-MB binding) behave similarly, although not identically, both have limited susceptibility to chlorine treatments of ≤25 ppm total chlorine. Since sewage treatment is performed at ≤25 ppm total chlorine, targeting free chlorine levels of 0.5 to 1.0 ppm, these results suggest that traditional chlorine-based sewage treatment does not inactivate HuNoV efficiently.IMPORTANCE HuNoV is ubiquitous in sewage. A receptor binding assay was used to assess inactivation of HuNoV by chlorine-based sewage treatment, given that the virus cannot be routinely propagated in vitro Results reported here indicate that chlorine treatment of sewage is not effective for inactivating HuNoV unless chlorine levels are above those routinely used for sewage treatment.


Asunto(s)
Cloro/farmacología , Desinfectantes/farmacología , Levivirus/efectos de los fármacos , Norovirus/efectos de los fármacos , Aguas del Alcantarillado/virología , Eliminación de Residuos Líquidos/métodos , Animales , Humanos , Levivirus/crecimiento & desarrollo , Norovirus/crecimiento & desarrollo , Aguas del Alcantarillado/química , Porcinos , Inactivación de Virus/efectos de los fármacos
7.
Food Microbiol ; 59: 76-84, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27375246

RESUMEN

Human noroviruses are the leading cause of non-bacterial shellfish associated gastroenteritis. Here we report on the detection and characterization of norovirus (NoV) in shellfish associated outbreaks. Requests were received from state and federal officials for technical assistance in the analysis of shellfish for NoV and male specific coliphage (MSC; an enteric virus surrogate) during the years 2009 thru 2014. In outbreaks where NoV was detected, genogroup II (GII) levels ranged from 2.4 to 82.0 RT-qPCR U/g of digestive diverticula (DD) while NoV genogroup I (GI) levels ranged from 1.5 to 29.8 RT-qPCR U/g of DD. Murine norovirus extraction efficiencies ranged between 50 and 85%. MSC levels ranged from <6 to 80 PFU/100 g. Phylogenetic analysis of the outbreak sequences revealed strains clustering with GI.8, GI.4, GII.3, GII.4, GII.7, and GII.21. There was 100% homology between the shellfish and clinical strains occurring in 2 of 8 outbreaks. Known shellfish consumption data demonstrated probable infectious particles ingested as low as 12. These investigations demonstrate effective detection, quantification, and characterization of NoV in shellfish associated with illness.


Asunto(s)
Infecciones por Caliciviridae/epidemiología , Infecciones por Caliciviridae/virología , Brotes de Enfermedades , Norovirus/genética , Norovirus/aislamiento & purificación , Ostreidae/virología , Mariscos/virología , Animales , Infecciones por Caliciviridae/diagnóstico , Colifagos/genética , Brotes de Enfermedades/prevención & control , Heces/virología , Gastroenteritis/prevención & control , Gastroenteritis/virología , Genotipo , Humanos , Ratones , Filogenia , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN , Estados Unidos/epidemiología
8.
Appl Environ Microbiol ; 81(14): 4669-81, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25934626

RESUMEN

Human norovirus (NoV) is the leading cause of foodborne illness in the United States and Canada. Wastewater treatment plant (WWTP) effluents impacting bivalve mollusk-growing areas are potential sources of NoV contamination. We have developed a meta-analysis that evaluates WWTP influent concentrations and log10 reductions of NoV genotype I (NoV GI; in numbers of genome copies per liter [gc/liter]), NoV genotype II (NoV GII; in gc/liter), and male-specific coliphage (MSC; in number of PFU per liter), a proposed viral surrogate for NoV. The meta-analysis included relevant data (2,943 measurements) reported in the scientific literature through September 2013 and previously unpublished surveillance data from the United States and Canada. Model results indicated that the mean WWTP influent concentration of NoV GII (3.9 log10 gc/liter; 95% credible interval [CI], 3.5, 4.3 log10 gc/liter) is larger than the value for NoV GI (1.5 log10 gc/liter; 95% CI, 0.4, 2.4 log10 gc/liter), with large variations occurring from one WWTP to another. For WWTPs with mechanical systems and chlorine disinfection, mean log10 reductions were -2.4 log10 gc/liter (95% CI, -3.9, -1.1 log10 gc/liter) for NoV GI, -2.7 log10 gc/liter (95% CI, -3.6, -1.9 log10 gc/liter) for NoV GII, and -2.9 log10 PFU per liter (95% CI, -3.4, -2.4 log10 PFU per liter) for MSCs. Comparable values for WWTPs with lagoon systems and chlorine disinfection were -1.4 log10 gc/liter (95% CI, -3.3, 0.5 log10 gc/liter) for NoV GI, -1.7 log10 gc/liter (95% CI, -3.1, -0.3 log10 gc/liter) for NoV GII, and -3.6 log10 PFU per liter (95% CI, -4.8, -2.4 PFU per liter) for MSCs. Within WWTPs, correlations exist between mean NoV GI and NoV GII influent concentrations and between the mean log10 reduction in NoV GII and the mean log10 reduction in MSCs.


Asunto(s)
Colifagos/crecimiento & desarrollo , Agua Dulce/virología , Norovirus/crecimiento & desarrollo , Aguas Residuales/microbiología , Purificación del Agua/instrumentación , Colifagos/genética , Colifagos/aislamiento & purificación , Desinfección , Agua Dulce/química , Genotipo , Norovirus/genética , Norovirus/aislamiento & purificación , Aguas Residuales/química
9.
J Virol Methods ; 178(1-2): 253-7, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21963395

RESUMEN

Human norovirus (HuNoV) and hepatitis A (HAV) are recognized as leading causes of non-bacterial foodborne associated illnesses in the United States. DNA sequencing is generally considered the standard for accurate viral genotyping in support of epidemiological investigations. Due to the genetic diversity of noroviruses (NoV), degenerate primer sets are often used in conventional reverse transcription (RT) PCR and real-time RT-quantitative PCR (RT-qPCR) for the detection of these viruses and cDNA fragments are generally cloned prior to sequencing. HAV detection methods that are sensitive and specific for real-time RT-qPCR yields small fragments sizes of 89-150bp, which can be difficult to sequence. In order to overcome these obstacles, norovirus and HAV primers were tailed with M13 forward and reverse primers. This modification increases the sequenced product size and allows for direct sequencing of the amplicons utilizing complementary M13 primers. HuNoV and HAV cDNA products from environmentally contaminated oysters were analyzed using this method. Alignments of the sequenced samples revealed ≥95% nucleotide identities. Tailing NoV and HAV primers with M13 sequence increases the cDNA product size, offers an alternative to cloning, and allows for rapid, accurate and direct sequencing of cDNA products produced by conventional or real time RT-qPCR assays.


Asunto(s)
Virus de la Hepatitis A Humana/genética , Norovirus/genética , Ostreidae/virología , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Análisis de Secuencia de ADN/métodos , Animales , Cartilla de ADN/genética , Virus de la Hepatitis A Humana/aislamiento & purificación , Humanos , Datos de Secuencia Molecular , Norovirus/aislamiento & purificación , Estados Unidos
10.
Appl Environ Microbiol ; 76(9): 2754-68, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20190085

RESUMEN

Two samples of market oysters, primarily from retail establishments, were collected twice each month in each of nine states during 2007. Samples were shipped refrigerated overnight to five U.S. Food and Drug Administration laboratories on a rotating basis and analyzed by most probable number (MPN) for total and pathogenic Vibrio parahaemolyticus and V. vulnificus numbers and for the presence of toxigenic V. cholerae, Salmonella spp., norovirus (NoV), and hepatitis A virus (HAV). Levels of indicator organisms, including fecal coliforms (MPN), Escherichia coli (MPN), male-specific bacteriophage, and aerobic plate counts, were also determined. V. parahaemolyticus and V. vulnificus levels were distributed seasonally and geographically by harvest region and were similar to levels observed in a previous study conducted in 1998-1999. Levels of pathogenic V. parahaemolyticus were typically several logs lower than total V. parahaemolyticus levels regardless of season or region. Pathogenic V. parahaemolyticus levels in the Gulf and Mid-Atlantic regions were about two logs greater than the levels observed in the Pacific and North Atlantic regions. Pathogens generally associated with fecal pollution were detected sporadically or not at all (toxigenic V. cholerae, 0%; Salmonella, 1.5%; NoV, 3.9%; HAV, 4.4%). While seasonal prevalences of NoV and HAV were generally greater in oysters harvested from December to March, the low detection frequency obscured any apparent seasonal effects. Overall, there was no relationship between the levels of indicator microorganisms and the presence of enteric viruses. These data provide a baseline that can be used to further validate risk assessment predictions, determine the effectiveness of new control measures, and compare the level of protection provided by the U.S. shellfish sanitation system to those in other countries.


Asunto(s)
Bacterias/aislamiento & purificación , Ostreidae/microbiología , Mariscos/microbiología , Virus/aislamiento & purificación , Animales , Infecciones por Caliciviridae/epidemiología , Infecciones por Caliciviridae/virología , Brotes de Enfermedades , Humanos , Mid-Atlantic Region , Norovirus/aislamiento & purificación , Ostreidae/virología , Estaciones del Año , Estados Unidos/epidemiología , Vibrio parahaemolyticus/aislamiento & purificación , Vibrio vulnificus/aislamiento & purificación
11.
Appl Environ Microbiol ; 69(12): 7130-6, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14660358

RESUMEN

An 18-month survey was conducted to examine the prevalence of enteric viruses and their relationship to indicators in environmentally polluted shellfish. Groups of oysters, one group per 4 weeks, were relocated to a coastal water area in the Gulf of Mexico that is impacted by municipal sewage and were analyzed for enteroviruses, Norwalk-like viruses (NLV), and indicator microorganisms (fecal coliform, Escherichia coli, and male-specific coliphages). The levels of indicator microorganisms were consistent with the expected continuous pollution of the area. Fourteen of the 18 oyster samples were found by reverse transcription (RT)-PCR to harbor NLV and/or enterovirus sequences. Of the four virus-negative oysters, three had exposure to water temperatures of >29 degrees C. Concomitant with these findings, two of these four oysters also accumulated the lowest levels of coliphages. PCR primers targeting pan-enteroviruses and the NLV 95/96-US common subset were utilized; NLV sequences were detected more frequently than those of enteroviruses. Within the 12-month sampling period, NLV and enterovirus sequences were detected in 58 and 42%, respectively, of the oysters (67% of the oysters tested were positive for at least one virus) from a prohibited shellfish-growing area approximately 30 m away from a sewage discharge site. Eight (4.6%) of the 175 NLV capsid nucleotide sequences were heterogeneous among the clones derived from naturally polluted oysters. Overall, enteric viral sequences were found in the contaminated oysters throughout all seasons except hot summer, with a higher prevalence of NLV than enterovirus. Although a high percentage of the oysters harbored enteric viruses, the virus levels were usually less than or equal to 2 logs of RT-PCR-detectable units per gram of oyster meat.


Asunto(s)
Enterovirus/aislamiento & purificación , Agua Dulce/virología , Norovirus/aislamiento & purificación , Ostreidae/microbiología , Ostreidae/virología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Aguas del Alcantarillado/virología , Animales , Secuencia de Bases , Cápside , Colifagos/aislamiento & purificación , ADN Viral/análisis , Enterovirus/genética , Monitoreo del Ambiente , Escherichia coli/aislamiento & purificación , Agua Dulce/microbiología , Datos de Secuencia Molecular , Norovirus/genética , Análisis de Secuencia de ADN , Aguas del Alcantarillado/microbiología , Contaminación del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...