Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biophys J ; 123(5): 555-571, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38291752

RESUMEN

Multiscale models aiming to connect muscle's molecular and cellular function have been difficult to develop, in part due to a lack of self-consistent multiscale data. To address this gap, we measured the force response from single, skinned rabbit psoas muscle fibers to ramp shortenings and step stretches performed on the plateau region of the force-length relationship. We isolated myosin from the same muscles and, under similar conditions, performed single-molecule and ensemble measurements of myosin's ATP-dependent interaction with actin using laser trapping and in vitro motility assays. We fit the fiber data by developing a partial differential equation model that includes thick filament activation, whereby an increase in force on the thick filament pulls myosin out of an inhibited state. The model also includes a series elastic element and a parallel elastic element. This parallel elastic element models a titin-actin interaction proposed to account for the increase in isometric force after stretch (residual force enhancement). By optimizing the model fit to a subset of our fiber measurements, we specified seven unknown parameters. The model then successfully predicted the remainder of our fiber measurements and also our molecular measurements from the laser trap and in vitro motility. The success of the model suggests that our multiscale data are self-consistent and can serve as a testbed for other multiscale models. Moreover, the model captures the decrease in isometric force observed in our muscle fibers after active shortening (force depression), suggesting a molecular mechanism for force depression, whereby a parallel elastic element combines with thick filament activation to decrease the number of cycling cross-bridges.


Asunto(s)
Actinas , Depresión , Animales , Conejos , Sarcómeros/fisiología , Fibras Musculares Esqueléticas/fisiología , Miosinas , Contracción Muscular
2.
bioRxiv ; 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37808737

RESUMEN

Multiscale models aiming to connect muscle's molecular and cellular function have been difficult to develop, in part, due to a lack of self-consistent multiscale data. To address this gap, we measured the force response from single skinned rabbit psoas muscle fibers to ramp shortenings and step stretches performed on the plateau region of the force-length relationship. We isolated myosin from the same muscles and, under similar conditions, performed single molecule and ensemble measurements of myosin's ATP-dependent interaction with actin using laser trapping and in vitro motility assays. We fit the fiber data by developing a partial differential equation model that includes thick filament activation, whereby an increase in force on the thick filament pulls myosin out of an inhibited state. The model also includes a series elastic element and a parallel elastic element. This parallel elastic element models a titin-actin interaction proposed to account for the increase in isometric force following stretch (residual force enhancement). By optimizing the model fit to a subset of our fiber measurements, we specified seven unknown parameters. The model then successfully predicted the remainder of our fiber measurements and also our molecular measurements from the laser trap and in vitro motility. The success of the model suggests that our multiscale data are self-consistent and can serve as a testbed for other multiscale models. Moreover, the model captures the decrease in isometric force observed in our muscle fibers after active shortening (force depression), suggesting a molecular mechanism for force depression, whereby a parallel elastic element combines with thick filament activation to decrease the number of cycling cross-bridges.

3.
Biopreserv Biobank ; 20(5): 417-422, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36201224

RESUMEN

Biobanking defines all activities linked to bioresource management-whether of human, animal, microbial, or environmental origin-which means that any biobank information management system should take into account the multistep life cycle of the samples: from acquisition, through preparation, storage, to distribution to the end users (medical or research teams). Different types of biobanks can use diverse approaches, making it difficult to find software that can handle all types of scenarios. Modul-Bio has developed MBioLIMS BioBanking®, a software dedicated to biobanking, as a modular solution so that our various clients can access the functionalities and scale in a system to match their needs. These projects range from biobanks setup and managed by academic institutions, hospitals, and private companies to small and large clinical trials across different countries, as well as to whole campus or organization solutions for multiple biorepositories. Each solution differs in size, requirements, and number of users, from small biobanks with a few members of staff accessing the software to large operations with multiple sites that can collect and ship samples to a centralized site. This article explores different projects that use Modul-Bio's software in a myriad of ways to manage the complete life cycle of biospecimens and associated data.


Asunto(s)
Bancos de Muestras Biológicas , Investigación Biomédica , Humanos , Programas Informáticos , Universidades
4.
Cytoskeleton (Hoboken) ; 78(5): 185-198, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34331410

RESUMEN

Myosins are a family of motor proteins responsible for various forms of cellular motility, including muscle contraction and vesicular transport. The most fundamental aspect of myosin is its ability to transduce the chemical energy from the hydrolysis of ATP into mechanical work, in the form of force and/or motion. A key unanswered question of the transduction process is the timing of the force-generating powerstroke relative to the release of phosphate (Pi ) from the active site. We examined the ability of single-headed myosin Va to generate a powerstroke in a single molecule laser trap assay while maintaining Pi in its active site, by either elevating Pi in solution or by introducing a mutation in myosin's active site (S217A) to slow Pi -release from the active site. Upon binding to the actin filament, WT myosin generated a powerstoke rapidly (≥500 s-1 ) and without a detectable delay, both in the absence and presence of 30 mM Pi . The elevated levels of Pi did, however, affect event lifetime, eliminating the longest 25% of binding events, confirming that Pi rebound to myosin's active site and accelerated detachment. The S217A construct also generated a powerstroke similar in size and rate upon binding to actin despite the slower Pi release rate. These findings provide direct evidence that myosin Va generates a powerstroke with Pi still in its active site. Therefore, the findings are most consistent with a model in which the powerstroke occurs prior to the release of Pi from the active site.


Asunto(s)
Miosinas , Fosfatos , Actinas/metabolismo , Adenosina Trifosfato , Dominio Catalítico , Contracción Muscular , Miosinas/metabolismo
5.
Biophys J ; 119(3): 567-580, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32652059

RESUMEN

Molecular motors have evolved to transduce chemical energy from ATP into mechanical work to drive essential cellular processes, from muscle contraction to vesicular transport. Dysfunction of these motors is a root cause of many pathologies necessitating the need for intrinsic control over molecular motor function. Herein, we demonstrate that positional isomerism can be used as a simple and powerful tool to control the molecular motor of muscle, myosin. Using three isomers of a synthetic non-nucleoside triphosphate, we demonstrate that myosin's force- and motion-generating capacity can be dramatically altered at both the ensemble and single-molecule levels. By correlating our experimental results with computation, we show that each isomer exerts intrinsic control by affecting distinct steps in myosin's mechanochemical cycle. Our studies demonstrate that subtle variations in the structure of an abiotic energy source can be used to control the force and motility of myosin without altering myosin's structure.


Asunto(s)
Contracción Muscular , Miosinas , Actinas/metabolismo , Adenosina Trifosfato , Isomerismo , Fenómenos Mecánicos , Músculos/metabolismo , Miosinas/metabolismo
6.
J Muscle Res Cell Motil ; 39(3-4): 135-147, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30382520

RESUMEN

The loss of muscle force and power during fatigue from intense contractile activity is associated with, and likely caused by, elevated levels of phosphate ([Formula: see text]) and hydrogen ions (decreased pH). To understand how these deficits in muscle performance occur at the molecular level, we used direct measurements of mini-ensembles of myosin generating force in the laser trap assay at pH 7.4 and 6.5. The data are consistent with a mechanochemical model in which a decrease in pH reduces myosin's detachment from actin (by slowing ADP release), increases non-productive myosin binding (by detached myosin rebinding without a powerstroke), and reduces myosin's attachment to actin (by slowing the weak-to-strong binding transition). Additional support of this mechanism is found by incorporating it into a branched pathway model for the effects of [Formula: see text] on myosin's interaction with actin. Including pH-dependence in one additional parameter (acceleration of [Formula: see text]-induced detachment), the model reproduces experimental measurements at high and low pH, and variable [Formula: see text], from the single molecule to large ensemble levels. Furthermore, when scaled up, the model predicts force-velocity relationships that are consistent with muscle fiber measurements. The model suggests that reducing pH has two opposing effects, a decrease in attachment favoring a decrease in muscle force and a decrease in detachment favoring an increase in muscle force. Depending on experimental details, the addition of [Formula: see text] can strengthen one or the other effect, resulting in either synergistic or antagonistic effects. This detailed molecular description suggests a molecular basis for contractile failure during muscle fatigue.


Asunto(s)
Actinas/metabolismo , Modelos Biológicos , Contracción Muscular/fisiología , Fuerza Muscular/fisiología , Músculo Esquelético/metabolismo , Miosinas/metabolismo , Animales , Pollos , Concentración de Iones de Hidrógeno
7.
Front Physiol ; 9: 862, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30042692

RESUMEN

Elevated levels of the metabolic by-products, including acidosis (i.e., high [H+]) and phosphate (Pi) are putative agents of muscle fatigue; however, the mechanism through which they affect myosin's function remain unclear. To elucidate these mechanisms, we directly examined the effect of acidosis (pH 6.5 vs. 7.4), alone and in combination with elevated levels of Pi on the force-generating capacity of a mini-ensemble of myosin using a laser trap assay. Acidosis decreased myosin's average force-generating capacity by 20% (p < 0.05). The reduction was due to both a decrease in the force generated during each actomyosin interaction, as well as an increase in the number of binding events generating negative forces. Adding Pi to the acidic condition resulted in a quantitatively similar decrease in force but was solely due to an elimination of all high force-generating events (>2 pN), resulting from an acceleration of the myosin's rate of detachment from actin. Acidosis and Pi also had distinct effects on myosin's steady state ATPase rate with acidosis slowing it by ∼90% (p > 0.05), while the addition of Pi under acidic conditions caused a significant recovery in the ATPase rate. These data suggest that these two fatigue agents have distinct effects on myosin's cross-bridge cycle that may underlie the synergistic effect that they have muscle force. Thus these data provide novel molecular insight into the mechanisms underlying the depressive effects of Pi and H+ on muscle contraction during fatigue.

8.
Front Physiol ; 6: 199, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26236240

RESUMEN

Cardiac arrest is a prevalent condition with a poor prognosis, attributable in part to persistent myocardial dysfunction following resuscitation. The molecular basis of this dysfunction remains unclear. We induced cardiac arrest in a porcine model of acute sudden death and assessed the impact of ischemia and reperfusion on the molecular function of isolated cardiac contractile proteins. Cardiac arrest was electrically induced, left untreated for 12 min, and followed by a resuscitation protocol. With successful resuscitations, the heart was reperfused for 2 h (IR2) and the muscle harvested. In failed resuscitations, tissue samples were taken following the failed efforts (IDNR). Actin filament velocity, using myosin isolated from IR2 or IDNR cardiac tissue, was nearly identical to myosin from the control tissue in a motility assay. However, both maximal velocity (25% faster than control) and calcium sensitivity (pCa50 6.57 ± 0.04 IDNR vs. 6.34 ± 0.07 control) were significantly (p < 0.05) enhanced using native thin filaments (actin+troponin+tropomyosin) from IDNR samples, suggesting that the enhanced velocity is mediated through an alteration in muscle regulatory proteins (troponin+tropomyosin). Mass spectrometry analysis showed that only samples from the IR2 had an increase in total phosphorylation levels of troponin (Tn) and tropomyosin (Tm), but both IR2 and IDNR samples demonstrated a significant shift from mono-phosphorylated to bis-phosphorylated forms of the inhibitory subunit of Tn (TnI) compared to control. This suggests that the shift to bis-phosphorylation of TnI is associated with the enhanced function in IDNR, but this effect may be attenuated when phosphorylation of Tm is increased in tandem, as observed for IR2. There are likely many other molecular changes induced following cardiac arrest, but to our knowledge, these data provide the first evidence that this form cardiac arrest can alter the in vitro function of the cardiac contractile proteins.

9.
Biophys J ; 105(10): 2374-84, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24268149

RESUMEN

Elevated levels of phosphate (Pi) reduce isometric force, providing support for the notion that the release of Pi from myosin is closely associated with the generation of muscular force. Pi is thought to rebind to actomyosin in an ADP-bound state and reverse the force-generating steps, including the rotation of the lever arm (i.e., the powerstroke). Despite extensive study, this mechanism remains controversial, in part because it fails to explain the effects of Pi on isometric ATPase and unloaded shortening velocity. To gain new insight into this process, we determined the effect of Pi on the force-generating capacity of a small ensemble of myosin (∼12 myosin heads) using a three-bead laser trap assay. In the absence of Pi, myosin pulled the actin filament out of the laser trap an average distance of 54 ± 4 nm, translating into an average peak force of 1.2 pN. By contrast, in the presence of 30 mM Pi, myosin generated only enough force to displace the actin filament by 13 ± 1 nm, generating just 0.2 pN of force. The elevated Pi also caused a >65% reduction in binding-event lifetime, suggesting that Pi induces premature detachment from a strongly bound state. Definitive evidence of a Pi-induced powerstroke reversal was not observed, therefore we determined if a branched kinetic model in which Pi induces detachment from a strongly bound, postpowerstroke state could explain these observations. The model was able to accurately reproduce not only the data presented here, but also the effects of Pi on both isometric ATPase in muscle fibers and actin filament velocity in a motility assay. The ability of the model to capture the findings presented here as well as previous findings suggests that Pi-induced inhibition of force may proceed along a kinetic pathway different from that of force generation.


Asunto(s)
Fenómenos Mecánicos , Miosinas/metabolismo , Fosfatos/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , Fenómenos Biomecánicos , Pollos , Cinética , Rayos Láser , Modelos Biológicos , Modelos Moleculares , Miosinas/química , Conformación Proteica , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...