Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 59
1.
Antib Ther ; 6(4): 277-297, 2023 Oct.
Article En | MEDLINE | ID: mdl-38075238

Background: Due to COVID-19, pandemic preparedness emerges as a key imperative, necessitating new approaches to accelerate development of reagents against infectious pathogens. Methods: Here, we developed an integrated approach combining synthetic, computational and structural methods with in vitro antibody selection and in vivo immunization to design, produce and validate nature-inspired nanoparticle-based reagents against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Results: Our approach resulted in two innovations: (i) a thermostable nasal vaccine called ADDoCoV, displaying multiple copies of a SARS-CoV-2 receptor binding motif derived epitope and (ii) a multivalent nanoparticle superbinder, called Gigabody, against SARS-CoV-2 including immune-evasive variants of concern (VOCs). In vitro generated neutralizing nanobodies and electron cryo-microscopy established authenticity and accessibility of epitopes displayed by ADDoCoV. Gigabody comprising multimerized nanobodies prevented SARS-CoV-2 virion attachment with picomolar EC50. Vaccinating mice resulted in antibodies cross-reacting with VOCs including Delta and Omicron. Conclusion: Our study elucidates Adenovirus-derived dodecamer (ADDomer)-based nanoparticles for use in active and passive immunization and provides a blueprint for crafting reagents to combat respiratory viral infections.

2.
Elife ; 122023 06 13.
Article En | MEDLINE | ID: mdl-37310006

Coronavirus disease-19 (COVID-19) causes immune perturbations which may persist long term, and patients frequently report ongoing symptoms for months after recovery. We assessed immune activation at 3-12 months post hospital admission in 187 samples from 63 patients with mild, moderate, or severe disease and investigated whether it associates with long COVID. At 3 months, patients with severe disease displayed persistent activation of CD4+ and CD8+ T-cells, based on expression of HLA-DR, CD38, Ki67, and granzyme B, and elevated plasma levels of interleukin-4 (IL-4), IL-7, IL-17, and tumor necrosis factor-alpha (TNF-α) compared to mild and/or moderate patients. Plasma from severe patients at 3 months caused T-cells from healthy donors to upregulate IL-15Rα, suggesting that plasma factors in severe patients may increase T-cell responsiveness to IL-15-driven bystander activation. Patients with severe disease reported a higher number of long COVID symptoms which did not however correlate with cellular immune activation/pro-inflammatory cytokines after adjusting for age, sex, and disease severity. Our data suggests that long COVID and persistent immune activation may correlate independently with severe disease.


COVID-19 , Humans , Post-Acute COVID-19 Syndrome , CD8-Positive T-Lymphocytes , SARS-CoV-2/metabolism , Cytokines/metabolism
3.
J Biol Chem ; 299(8): 104981, 2023 08.
Article En | MEDLINE | ID: mdl-37390984

CD8+ T cell-mediated recognition of peptide-major histocompatibility complex class I (pMHCI) molecules involves cooperative binding of the T cell receptor (TCR), which confers antigen specificity, and the CD8 coreceptor, which stabilizes the TCR/pMHCI complex. Earlier work has shown that the sensitivity of antigen recognition can be regulated in vitro by altering the strength of the pMHCI/CD8 interaction. Here, we characterized two CD8 variants with moderately enhanced affinities for pMHCI, aiming to boost antigen sensitivity without inducing non-specific activation. Expression of these CD8 variants in model systems preferentially enhanced pMHCI antigen recognition in the context of low-affinity TCRs. A similar effect was observed using primary CD4+ T cells transduced with cancer-targeting TCRs. The introduction of high-affinity CD8 variants also enhanced the functional sensitivity of primary CD8+ T cells expressing cancer-targeting TCRs, but comparable results were obtained using exogenous wild-type CD8. Specificity was retained in every case, with no evidence of reactivity in the absence of cognate antigen. Collectively, these findings highlight a generically applicable mechanism to enhance the sensitivity of low-affinity pMHCI antigen recognition, which could augment the therapeutic efficacy of clinically relevant TCRs.


CD8 Antigens , CD8-Positive T-Lymphocytes , Histocompatibility Antigens Class I , Lymphocyte Activation , Histocompatibility Antigens Class I/metabolism , Peptides/metabolism , Receptors, Antigen, T-Cell/metabolism , Humans
4.
Elife ; 122023 01 06.
Article En | MEDLINE | ID: mdl-36607230

Some T cells that have been activated by a herpesvirus can also respond to SARS-CoV-2, even if the original herpesvirus infection happened before the COVID-19 pandemic.


COVID-19 , Herpesviridae , Humans , SARS-CoV-2 , Pandemics , T-Lymphocytes
5.
Life Sci Alliance ; 6(2)2023 02.
Article En | MEDLINE | ID: mdl-36622345

Neutrophils are vital in defence against pathogens, but excessive neutrophil activity can lead to tissue damage and promote acute respiratory distress syndrome. COVID-19 is associated with systemic expansion of immature neutrophils, but the functional consequences of this shift to immaturity are not understood. We used flow cytometry to investigate activity and phenotypic diversity of circulating neutrophils in acute and convalescent COVID-19 patients. First, we demonstrate hyperactivation of immature CD10- subpopulations in severe disease, with elevated markers of secondary granule release. Partially activated immature neutrophils were detectable 12 wk post-hospitalisation, indicating long term myeloid dysregulation in convalescent COVID-19 patients. Second, we demonstrate that neutrophils from moderately ill patients down-regulate the chemokine receptor CXCR2, whereas neutrophils from severely ill individuals fail to do so, suggesting an altered ability for organ trafficking and a potential mechanism for induction of disease tolerance. CD10- and CXCR2hi neutrophil subpopulations were enriched in severe disease and may represent prognostic biomarkers for the identification of individuals at high risk of progressing to severe COVID-19.


COVID-19 , Neutrophils , Receptors, Interleukin-8B , Humans , COVID-19/immunology , Flow Cytometry , Neutrophils/immunology , Receptors, Interleukin-8B/metabolism
6.
Front Immunol ; 13: 968317, 2022.
Article En | MEDLINE | ID: mdl-36439154

Low-volume antibody assays can be used to track SARS-CoV-2 infection rates in settings where active testing for virus is limited and remote sampling is optimal. We developed 12 ELISAs detecting total or antibody isotypes to SARS-CoV-2 nucleocapsid, spike protein or its receptor binding domain (RBD), 3 anti-RBD isotype specific luciferase immunoprecipitation system (LIPS) assays and a novel Spike-RBD bridging LIPS total-antibody assay. We utilized pre-pandemic (n=984) and confirmed/suspected recent COVID-19 sera taken pre-vaccination rollout in 2020 (n=269). Assays measuring total antibody discriminated best between pre-pandemic and COVID-19 sera and were selected for diagnostic evaluation. In the blind evaluation, two of these assays (Spike Pan ELISA and Spike-RBD Bridging LIPS assay) demonstrated >97% specificity and >92% sensitivity for samples from COVID-19 patients taken >21 days post symptom onset or PCR test. These assays offered better sensitivity for the detection of COVID-19 cases than a commercial assay which requires 100-fold larger serum volumes. This study demonstrates that low-volume in-house antibody assays can provide good diagnostic performance, and highlights the importance of using well-characterized samples and controls for all stages of assay development and evaluation. These cost-effective assays may be particularly useful for seroprevalence studies in low and middle-income countries.


COVID-19 , SARS-CoV-2 , Humans , Spike Glycoprotein, Coronavirus , Antibodies, Viral , Viral Envelope Proteins , Seroepidemiologic Studies , COVID-19/diagnosis , Membrane Glycoproteins
7.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Article En | MEDLINE | ID: mdl-34272276

CD8+ T cells are inherently cross-reactive and recognize numerous peptide antigens in the context of a given major histocompatibility complex class I (MHCI) molecule via the clonotypically expressed T cell receptor (TCR). The lineally expressed coreceptor CD8 interacts coordinately with MHCI at a distinct and largely invariant site to slow the TCR/peptide-MHCI (pMHCI) dissociation rate and enhance antigen sensitivity. However, this biological effect is not necessarily uniform, and theoretical models suggest that antigen sensitivity can be modulated in a differential manner by CD8. We used two intrinsically controlled systems to determine how the relationship between the TCR/pMHCI interaction and the pMHCI/CD8 interaction affects the functional sensitivity of antigen recognition. Our data show that modulation of the pMHCI/CD8 interaction can reorder the agonist hierarchy of peptide ligands across a spectrum of affinities for the TCR.


CD8 Antigens/immunology , Peptides/agonists , Peptides/immunology , Receptors, Antigen, T-Cell/immunology , Antigens/chemistry , Antigens/immunology , CD8-Positive T-Lymphocytes/immunology , Cross Reactions , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans , Kinetics , Ligands , Lymphocyte Activation , Models, Immunological , Mutation
8.
J Immunol ; 207(4): 1009-1017, 2021 08 15.
Article En | MEDLINE | ID: mdl-34321228

The human CD8+ T cell clone 6C5 has previously been shown to recognize the tert-butyl-modified Bax161-170 peptide LLSY(3-tBu)FGTPT presented by HLA-A*02:01. This nonnatural epitope was likely created as a by-product of fluorenylmethoxycarbonyl protecting group peptide synthesis and bound poorly to HLA-A*02:01. In this study, we used a systematic approach to identify and characterize natural ligands for the 6C5 TCR. Functional analyses revealed that 6C5 T cells only recognized the LLSYFGTPT peptide when tBu was added to the tyrosine residue and did not recognize the LLSYFGTPT peptide modified with larger (di-tBu) or smaller chemical groups (Me). Combinatorial peptide library screening further showed that 6C5 T cells recognized a series of self-derived peptides with dissimilar amino acid sequences to LLSY(3-tBu)FGTPT. Structural studies of LLSY(3-tBu)FGTPT and two other activating nonamers (IIGWMWIPV and LLGWVFAQV) in complex with HLA-A*02:01 demonstrated similar overall peptide conformations and highlighted the importance of the position (P) 4 residue for T cell recognition, particularly the capacity of the bulky amino acid tryptophan to substitute for the tBu-modified tyrosine residue in conjunction with other changes at P5 and P6. Collectively, these results indicated that chemical modifications directly altered the immunogenicity of a synthetic peptide via molecular mimicry, leading to the inadvertent activation of a T cell clone with unexpected and potentially autoreactive specificities.


CD8-Positive T-Lymphocytes/immunology , Lymphocyte Activation/immunology , Peptide Fragments/immunology , Peptides/immunology , Amino Acid Sequence , Antigen Presentation/immunology , Cells, Cultured , Epitopes, T-Lymphocyte/immunology , Humans , Ligands , Peptide Library
9.
Cell Rep Med ; 2(7): 100327, 2021 07 20.
Article En | MEDLINE | ID: mdl-34124701

Severe COVID-19 appears rare in children. This is unexpected, especially in young infants, who are vulnerable to severe disease caused by other respiratory viruses. We evaluate convalescent immune responses in 4 infants under 3 months old with confirmed COVID-19 who presented with mild febrile illness, alongside their parents, and adult controls recovered from confirmed COVID-19. Although not statistically significant, compared to seropositive adults, infants have high serum levels of IgG and IgA to SARS-CoV-2 spike protein, with a corresponding functional ability to block SARS-CoV-2 cellular entry. Infants also exhibit robust saliva anti-spike IgG and IgA responses. Spike-specific IFN-γ production by infant peripheral blood mononuclear cells appears restrained, but the frequency of spike-specific IFN-γ- and/or TNF-α-producing T cells is comparable between infants and adults. On principal-component analysis, infant immune responses appear distinct from their parents. Robust functional antibody responses alongside restrained IFN-γ production may help protect infants from severe COVID-19.


Antibody Formation , COVID-19/immunology , Interferon-gamma/metabolism , Spike Glycoprotein, Coronavirus/immunology , Adult , Female , Humans , Immunoglobulin A , Immunoglobulin G , Infant , Infant, Newborn , Interferon-gamma/immunology , Leukocytes, Mononuclear/metabolism , Male , Young Adult
10.
Elife ; 92020 12 17.
Article En | MEDLINE | ID: mdl-33331820

Here, we describe the case of a COVID-19 patient who developed recurring ventilator-associated pneumonia caused by Pseudomonas aeruginosa that acquired increasing levels of antimicrobial resistance (AMR) in response to treatment. Metagenomic analysis revealed the AMR genotype, while immunological analysis revealed massive and escalating levels of T-cell activation. These were both SARS-CoV-2 and P. aeruginosa specific, and bystander activated, which may have contributed to this patient's persistent symptoms and radiological changes.


Anti-Bacterial Agents/therapeutic use , COVID-19/complications , Lymphocyte Activation , Pneumonia, Ventilator-Associated/drug therapy , Pseudomonas Infections/drug therapy , SARS-CoV-2 , T-Lymphocytes/immunology , Anti-Bacterial Agents/pharmacology , COVID-19/immunology , COVID-19/therapy , Drug Resistance, Multiple, Bacterial , Humans , Lung/microbiology , Male , Meropenem/pharmacology , Meropenem/therapeutic use , Metagenomics , Middle Aged , Piperacillin, Tazobactam Drug Combination/pharmacology , Piperacillin, Tazobactam Drug Combination/therapeutic use , Pneumonia, Ventilator-Associated/diagnostic imaging , Pneumonia, Ventilator-Associated/etiology , Pseudomonas Infections/diagnostic imaging , Pseudomonas Infections/etiology , Pseudomonas aeruginosa/isolation & purification , Recurrence , Respiration, Artificial
11.
Front Immunol ; 11: 296, 2020.
Article En | MEDLINE | ID: mdl-32184781

The strong links between (Human Leukocyte Antigen) HLA, infection and autoimmunity combine to implicate T-cells as primary triggers of autoimmune disease (AD). T-cell crossreactivity between microbially-derived peptides and self-peptides has been shown to break tolerance and trigger AD in experimental animal models. Detailed examination of the potential for T-cell crossreactivity to trigger human AD will require means of predicting which peptides might be recognised by autoimmune T-cell receptors (TCRs). Recent developments in high throughput sequencing and bioinformatics mean that it is now possible to link individual TCRs to specific pathologies for the first time. Deconvolution of TCR function requires knowledge of TCR specificity. Positional Scanning Combinatorial Peptide Libraries (PS-CPLs) can be used to predict HLA-restriction and define antigenic peptides derived from self and pathogen proteins. In silico search of the known terrestrial proteome with a prediction algorithm that ranks potential antigens in order of recognition likelihood requires complex, large-scale computations over several days that are infeasible on a personal computer. We decreased the time required for peptide searching to under 30 min using multiple blocks on graphics processing units (GPUs). This time-efficient, cost-effective hardware accelerator was used to screen bacterial and fungal human pathogens for peptide sequences predicted to activate a T-cell clone, InsB4, that was isolated from a patient with type 1 diabetes and recognised the insulin B-derived epitope HLVEALYLV in the context of disease-risk allele HLA A*0201. InsB4 was shown to kill HLA A*0201+ human insulin producing ß-cells demonstrating that T-cells with this specificity might contribute to disease. The GPU-accelerated algorithm and multispecies pathogen proteomic databases were validated to discover pathogen-derived peptide sequences that acted as super-agonists for the InsB4 T-cell clone. Peptide-MHC tetramer binding and surface plasmon resonance were used to confirm that the InsB4 TCR bound to the highest-ranked peptide agonists derived from infectious bacteria and fungi. Adoption of GPU-accelerated prediction of T-cell agonists has the capacity to revolutionise our understanding of AD by identifying potential targets for autoimmune T-cells. This approach has further potential for dissecting T-cell responses to infectious disease and cancer.


Epitopes, T-Lymphocyte/metabolism , Insulin/metabolism , Pathogen-Associated Molecular Pattern Molecules/metabolism , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/immunology , Clone Cells , Combinatorial Chemistry Techniques , Computational Biology , Cross Reactions , Epitope Mapping , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , High-Throughput Nucleotide Sequencing , Host-Pathogen Interactions , Insulin/immunology , Molecular Mimicry , Pathogen-Associated Molecular Pattern Molecules/immunology , Peptide Library , T-Cell Antigen Receptor Specificity
12.
Mol Ther ; 26(5): 1206-1214, 2018 05 02.
Article En | MEDLINE | ID: mdl-29567312

Adoptive transfer of T cells engineered with a cancer-specific T cell receptor (TCR) has demonstrated clinical benefit. However, the risk for off-target toxicity of TCRs remains a concern. Here, we examined the cross-reactive profile of T cell clone (7B5) with a high functional sensitivity for the hematopoietic-restricted minor histocompatibility antigen HA-2 in the context of HLA-A*02:01. HA-2pos Epstein-Barr virus-transformed B lymphoblastic cell lines (EBV-LCLs) and primary acute myeloid leukemia samples, but not hematopoietic HA-2neg samples, are effectively recognized. However, we found unexpected off-target recognition of human fibroblasts and keratinocytes not expressing the HA-2 antigen. To uncover the origin of this off-target recognition, we performed an alanine scanning approach, identifying six out of nine positions to be important for peptide recognition. This indicates a low risk for broad cross-reactivity. However, using a combinatorial peptide library scanning approach, we identified a CDH13-derived peptide activating the 7B5 T cell clone. This was confirmed by recognition of CDH13-transduced EBV-LCLs and cell subsets endogenously expressing CDH13, such as proximal tubular epithelial cells. As such, we recommend the use of a combinatorial peptide library scan followed by screening against additional cell subsets to validate TCR specificity and detect off-target toxicity due to cross-reactivity directed against unrelated peptides before selecting candidate TCRs for clinical testing.


Receptors, Antigen, T-Cell/metabolism , T-Cell Antigen Receptor Specificity/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Amino Acid Sequence , Animals , Cadherins/immunology , Clone Cells/immunology , Clone Cells/metabolism , Cross Reactions/immunology , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , HLA-A2 Antigen/chemistry , HLA-A2 Antigen/immunology , Humans , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Neoplasm Proteins/chemistry , Neoplasm Proteins/immunology , Protein Binding , Receptors, Antigen, T-Cell/genetics
13.
Sci Rep ; 8(1): 2534, 2018 02 07.
Article En | MEDLINE | ID: mdl-29416058

CD8+ T-cell expansions are the primary manifestation of T-cell large granular lymphocytic leukemia (T-LGLL), which is frequently accompanied by neutropenia and rheumatoid arthritis, and also occur as a secondary phenomenon in leukemia patients treated with dasatinib, notably in association with various drug-induced side-effects. However, the mechanisms that underlie the genesis and maintenance of expanded CD8+ T-cell receptor (TCR)-Vß+ populations in these patient groups have yet to be fully defined. In this study, we performed a comprehensive phenotypic and clonotypic assessment of expanded (TCR-Vß+) and residual (TCR-Vß-) CD8+ T-cell populations in T-LGLL and dasatinib-treated chronic myelogenous leukemia (CML) patients. The dominant CD8+ TCR-Vß+ expansions in T-LGLL patients were largely monoclonal and highly differentiated, whereas the dominant CD8+ TCR-Vß+ expansions in dasatinib-treated CML patients were oligoclonal or polyclonal, and displayed a broad range of memory phenotypes. These contrasting features suggest divergent roles for antigenic drive in the immunopathogenesis of primary versus dasatinib-associated CD8+ TCR-Vß+ expansions.


Antineoplastic Agents/adverse effects , CD8-Positive T-Lymphocytes/immunology , Dasatinib/adverse effects , Leukemia, Large Granular Lymphocytic/drug therapy , Leukemia, Large Granular Lymphocytic/immunology , Leukemia, Myeloid, Chronic-Phase/drug therapy , Leukemia, Myeloid, Chronic-Phase/immunology , Receptors, Antigen, T-Cell, alpha-beta/immunology , Adult , Aged , Antineoplastic Agents/therapeutic use , CD8-Positive T-Lymphocytes/cytology , Clone Cells , Dasatinib/therapeutic use , Female , Humans , Male , Middle Aged , Phenotype
14.
J Biol Chem ; 292(3): 802-813, 2017 01 20.
Article En | MEDLINE | ID: mdl-27903649

T-cell cross-reactivity is essential for effective immune surveillance but has also been implicated as a pathway to autoimmunity. Previous studies have demonstrated that T-cell receptors (TCRs) that focus on a minimal motif within the peptide are able to facilitate a high level of T-cell cross-reactivity. However, the structural database shows that most TCRs exhibit less focused antigen binding involving contact with more peptide residues. To further explore the structural features that allow the clonally expressed TCR to functionally engage with multiple peptide-major histocompatibility complexes (pMHCs), we examined the ILA1 CD8+ T-cell clone that responds to a peptide sequence derived from human telomerase reverse transcriptase. The ILA1 TCR contacted its pMHC with a broad peptide binding footprint encompassing spatially distant peptide residues. Despite the lack of focused TCR-peptide binding, the ILA1 T-cell clone was still cross-reactive. Overall, the TCR-peptide contacts apparent in the structure correlated well with the level of degeneracy at different peptide positions. Thus, the ILA1 TCR was less tolerant of changes at peptide residues that were at, or adjacent to, key contact sites. This study provides new insights into the molecular mechanisms that control T-cell cross-reactivity with important implications for pathogen surveillance, autoimmunity, and transplant rejection.


CD8-Positive T-Lymphocytes , Peptides , Receptors, Antigen, T-Cell , Telomerase , CD8-Positive T-Lymphocytes/chemistry , CD8-Positive T-Lymphocytes/immunology , Cells, Cultured , Cross Reactions , Humans , Peptides/chemistry , Peptides/immunology , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/immunology , Telomerase/chemistry , Telomerase/immunology
15.
Immunol Cell Biol ; 95(1): 68-76, 2017 01.
Article En | MEDLINE | ID: mdl-27670790

The CD8 co-receptor engages peptide-major histocompatibility complex class I (pMHCI) molecules at a largely invariant site distinct from the T-cell receptor (TCR)-binding platform and enhances the sensitivity of antigen-driven activation to promote effective CD8+ T-cell immunity. A small increase in the strength of the pMHCI/CD8 interaction (~1.5-fold) can disproportionately amplify this effect, boosting antigen sensitivity by up to two orders of magnitude. However, recognition specificity is lost altogether with more substantial increases in pMHCI/CD8 affinity (~10-fold). In this study, we used a panel of MHCI mutants with altered CD8-binding properties to show that TCR-mediated antigen specificity is delimited by a pMHCI/CD8 affinity threshold. Our findings suggest that CD8 can be engineered within certain biophysical parameters to enhance the therapeutic efficacy of adoptive T-cell transfer irrespective of antigen specificity.


CD8 Antigens/metabolism , CD8-Positive T-Lymphocytes/immunology , Histocompatibility Antigens Class I/immunology , Cell Membrane/metabolism , Humans , Lymphocyte Activation/immunology , Mutation/genetics , Peptides/metabolism
16.
Sci Rep ; 6: 35332, 2016 10 17.
Article En | MEDLINE | ID: mdl-27748447

CD8+ T-cells play a role in the pathogenesis of autoimmune diseases such as multiple sclerosis and type 1 diabetes. However, drugs that target the entire CD8+ T-cell population are not desirable because the associated lack of specificity can lead to unwanted consequences, most notably an enhanced susceptibility to infection. Here, we show that autoreactive CD8+ T-cells are highly dependent on CD8 for ligand-induced activation via the T-cell receptor (TCR). In contrast, pathogen-specific CD8+ T-cells are relatively CD8-independent. These generic differences relate to an intrinsic dichotomy that segregates self-derived and exogenous antigen-specific TCRs according to the monomeric interaction affinity with cognate peptide-major histocompatibility complex class I (pMHCI). As a consequence, "blocking" anti-CD8 antibodies can suppress autoreactive CD8+ T-cell activation in a relatively selective manner. These findings provide a rational basis for the development and in vivo assessment of novel therapeutic strategies that preferentially target disease-relevant autoimmune responses within the CD8+ T-cell compartment.


Antibodies/immunology , CD8-Positive T-Lymphocytes/cytology , Histocompatibility Antigens Class I/metabolism , Receptors, Antigen, T-Cell/metabolism , Animals , Autoimmune Diseases/immunology , CD8 Antigens/immunology , Cell Line , Epitopes/metabolism , Humans , Immunosuppression Therapy , Islets of Langerhans/metabolism , Ligands , Lymphocyte Activation , Mice , Mice, Inbred NOD , Mice, Transgenic , Peptides/metabolism
17.
J Biol Chem ; 291(47): 24335-24351, 2016 Nov 18.
Article En | MEDLINE | ID: mdl-27645996

αßT cell receptor (TCR) genetic diversity is outnumbered by the quantity of pathogenic epitopes to be recognized. To provide efficient protective anti-viral immunity, a single TCR ideally needs to cross-react with a multitude of pathogenic epitopes. However, the frequency, extent, and mechanisms of TCR cross-reactivity remain unclear, with conflicting results on anti-viral T cell cross-reactivity observed in humans. Namely, both the presence and lack of T cell cross-reactivity have been reported with HLA-A*02:01-restricted epitopes from the Epstein-Barr and influenza viruses (BMLF-1 and M158, respectively) or with the hepatitis C and influenza viruses (NS31073 and NA231, respectively). Given the high sequence similarity of these paired viral epitopes (56 and 88%, respectively), the ubiquitous nature of the three viruses, and the high frequency of the HLA-A*02:01 allele, we selected these epitopes to establish the extent of T cell cross-reactivity. We combined ex vivo and in vitro functional assays, single-cell αßTCR repertoire sequencing, and structural analysis of these four epitopes in complex with HLA-A*02:01 to determine whether they could lead to heterologous T cell cross-reactivity. Our data show that sequence similarity does not translate to structural mimicry of the paired epitopes in complexes with HLA-A*02:01, resulting in induction of distinct αßTCR repertoires. The differences in epitope architecture might be an obstacle for TCR recognition, explaining the lack of T cell cross-reactivity observed. In conclusion, sequence similarity does not necessarily result in structural mimicry, and despite the need for cross-reactivity, antigen-specific TCR repertoires can remain highly specific.


Epitopes, T-Lymphocyte/immunology , HLA-A2 Antigen/immunology , Herpesvirus 4, Human/immunology , Influenza A virus/immunology , Phosphoproteins/immunology , Receptors, Antigen, T-Cell, alpha-beta/immunology , T-Lymphocytes/immunology , Trans-Activators/immunology , Viral Matrix Proteins/immunology , Epitopes, T-Lymphocyte/genetics , Female , HLA-A2 Antigen/genetics , Herpesvirus 4, Human/genetics , Humans , Influenza A virus/genetics , Male , Phosphoproteins/genetics , Receptors, Antigen, T-Cell, alpha-beta/genetics , Trans-Activators/genetics , Viral Matrix Proteins/genetics
19.
J Clin Invest ; 126(6): 2191-204, 2016 06 01.
Article En | MEDLINE | ID: mdl-27183389

The cross-reactivity of T cells with pathogen- and self-derived peptides has been implicated as a pathway involved in the development of autoimmunity. However, the mechanisms that allow the clonal T cell antigen receptor (TCR) to functionally engage multiple peptide-major histocompatibility complexes (pMHC) are unclear. Here, we studied multiligand discrimination by a human, preproinsulin reactive, MHC class-I-restricted CD8+ T cell clone (1E6) that can recognize over 1 million different peptides. We generated high-resolution structures of the 1E6 TCR bound to 7 altered peptide ligands, including a pathogen-derived peptide that was an order of magnitude more potent than the natural self-peptide. Evaluation of these structures demonstrated that binding was stabilized through a conserved lock-and-key-like minimal binding footprint that enables 1E6 TCR to tolerate vast numbers of substitutions outside of this so-called hotspot. Highly potent antigens of the 1E6 TCR engaged with a strong antipathogen-like binding affinity; this engagement was governed though an energetic switch from an enthalpically to entropically driven interaction compared with the natural autoimmune ligand. Together, these data highlight how T cell cross-reactivity with pathogen-derived antigens might break self-tolerance to induce autoimmune disease.


Insulin/immunology , Insulin/metabolism , Protein Precursors/immunology , Protein Precursors/metabolism , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Amino Acid Sequence , Autoimmunity , Clone Cells , Cross Reactions , HLA-A Antigens/chemistry , HLA-A Antigens/metabolism , Humans , Insulin/genetics , Kinetics , Ligands , Models, Molecular , Oligopeptides/genetics , Oligopeptides/immunology , Oligopeptides/metabolism , Protein Binding , Protein Precursors/genetics , Receptors, Antigen, T-Cell/chemistry
20.
Immunol Cell Biol ; 94(6): 573-82, 2016 07.
Article En | MEDLINE | ID: mdl-26846725

Evidence indicates that autoimmunity can be triggered by virus-specific CD8(+) T cells that crossreact with self-derived peptide epitopes presented on the cell surface by major histocompatibility complex class I (MHCI) molecules. Identification of the associated viral pathogens is challenging because individual T-cell receptors can potentially recognize up to a million different peptides. Here, we generate peptide length-matched combinatorial peptide library (CPL) scan data for a panel of virus-specific CD8(+) T-cell clones spanning different restriction elements and a range of epitope lengths. CPL scan data drove a protein database search limited to viruses that infect humans. Peptide sequences were ranked in order of likelihood of recognition. For all anti-viral CD8(+) T-cell clones examined in this study, the index peptide was either the top-ranked sequence or ranked as one of the most likely sequences to be recognized. Thus, we demonstrate that anti-viral CD8(+) T-cell clones are highly focused on their index peptide sequence and that 'CPL-driven database searching' can be used to identify the inciting virus-derived epitope for a given CD8(+) T-cell clone. Moreover, to augment access to CPL-driven database searching, we have created a publicly accessible webtool. Application of these methodologies in the clinical setting may clarify the role of viral pathogens in the etiology of autoimmune diseases.


Histocompatibility Antigens Class I/metabolism , Receptors, Antigen, T-Cell/metabolism , Viral Proteins/metabolism , Amino Acid Sequence , CD8-Positive T-Lymphocytes/immunology , Databases, Protein , HIV-1/immunology , Herpesvirus 4, Human/immunology , Humans , Ligands , Peptide Library , Peptides/chemistry , Peptides/metabolism , Reproducibility of Results , Species Specificity
...