Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Nature ; 623(7986): 324-328, 2023 Nov.
Article En | MEDLINE | ID: mdl-37938708

The physicochemical properties of molecular crystals, such as solubility, stability, compactability, melting behaviour and bioavailability, depend on their crystal form1. In silico crystal form selection has recently come much closer to realization because of the development of accurate and affordable free-energy calculations2-4. Here we redefine the state of the art, primarily by improving the accuracy of free-energy calculations, constructing a reliable experimental benchmark for solid-solid free-energy differences, quantifying statistical errors for the computed free energies and placing both hydrate crystal structures of different stoichiometries and anhydrate crystal structures on the same energy landscape, with defined error bars, as a function of temperature and relative humidity. The calculated free energies have standard errors of 1-2 kJ mol-1 for industrially relevant compounds, and the method to place crystal structures with different hydrate stoichiometries on the same energy landscape can be extended to other multi-component systems, including solvates. These contributions reduce the gap between the needs of the experimentalist and the capabilities of modern computational tools, transforming crystal structure prediction into a more reliable and actionable procedure that can be used in combination with experimental evidence to direct crystal form selection and establish control5.

2.
Angew Chem Int Ed Engl ; 59(46): 20357-20360, 2020 Nov 09.
Article En | MEDLINE | ID: mdl-32730676

We exploit the possible link between structural surface roughness and difficulty of crystallisation. Polymorphs with smooth surfaces may nucleate and crystallise more readily than polymorphs with rough surfaces. The concept is applied to crystal structure prediction landscapes and reveals a promising complementary way of ranking putative crystal structures.

5.
Faraday Discuss ; 211(0): 209-234, 2018 10 26.
Article En | MEDLINE | ID: mdl-30052254

Loratadine, an over-the-counter antihistamine medication, has two known monotropically related polymorphs, both of which feature disorder. A combined experimental and computational approach using variable temperature single crystal X-ray diffraction (VT-SCXRD) analysis and dispersion corrected density functional theory (DFT-D) reveals that the nature of the disorder in each form is markedly different and cannot be described by a simple isolated-site model with thermally populated conformations in either of the two cases. In Form I, the ethyl carbamate functionality adopts two different configurations, with adjacent moieties interacting along one-dimensional chains. The most stable arrangement features alternating configurations, but because of the low energetic cost of stacking faults, the domain sizes are short and an average crystal structure is observed experimentally. The configurational free energy of the disordered structure is lower than the energy of the two corresponding ordered crystal structures, but the energy decrease is dominated by the lower lattice energy of the alternating arrangement with a small entropic contribution. In Form II, the flexible cycloheptane bridge adopts two different configurations. The disorder is not an equilibrium property but is instead frozen-in during the crystallisation process. The configurational free energy of the disordered structure falls in between the lattice energies of the two corresponding ordered structures. The two ordered components of each disordered structure are all found in a crystal structure prediction (CSP) study with the GRACE programme. However, the experimentally observed stability relationship is only reproduced when the energy contribution of disorder is taken into account. The disordered model of Form I is found to be lower in energy than all the other predicted structures and there is no indication of a missing, thermodynamically more stable, form. The case of loratadine demonstrates that experimentally observed disorder close to 50/50 does not necessarily correspond to a free energy decrease by kT ln 2.

6.
Int J Pharm ; 514(2): 374-383, 2016 Dec 05.
Article En | MEDLINE | ID: mdl-27262269

Recent years have seen a marked diversification of excipient based formulation strategies used for the development and commercialisation of dry powder inhaler (DPI) products. These innovative approaches not only provide benefits to patients and health care professionals through the availability of a wider range of therapeutic DPI products, but, importantly, also allow formulators to exploit the potential opportunities that excipients provide for the development of DPIs. Whilst many DPI products have, and continue to be developed using a single formulation excipient, the commercialisation of DPI products which contain the two excipients lactose monohydrate and magnesium stearate, namely the 'dual excipient platform' has recently been achieved. This article provides an overview of the background and current status of the development of such 'dual excipient platform' based DPI products.


Drug Compounding/methods , Dry Powder Inhalers/methods , Excipients/chemistry , Lactose/chemistry , Stearic Acids/chemistry , Administration, Inhalation , Humans , Particle Size , Respiratory Therapy/methods , Surface Properties
7.
Eur J Pharm Sci ; 41(1): 23-30, 2010 Sep 11.
Article En | MEDLINE | ID: mdl-20553863

Salt screening and selection is a well established approach for improving the properties of drug candidates, including dissolution rate and bioavailability. Typically during early development only small amounts of compound are available for solid state profiling, including salt screening. In order to probe large areas of experimental space, high-throughput screening is utilized and is often designed in a way to search for suitable crystallization parameters within hundreds or even thousands of conditions. However, the hit rate in these types of screens can be very low. In order to allow for selection of a salt form early within the drug development process whilst using smaller amounts of compounds, a screening procedure taking into account the compounds properties and the driving forces for salt formation is described. Experiments were carried out on the model compounds clotrimazole, cinnarizine itraconazole and atropine. We found an increase in crystalline hit rate for water-insoluble drugs crystallized from solutions that included at least 10% aqueous content. Conversely it was observed that compounds with greater water solubility did not benefit from aqueous content in salt screening, instead organic solvents lead to more crystalline screening hits. Results from four model compounds show that the inclusion of an aqueous component to the salt reaction can enhance the chance of salt formation and significantly improve the crystalline hit rate for low water soluble drugs.


Pharmaceutical Preparations/chemistry , Salts/chemistry , Water/analysis , Crystallization , Crystallography, X-Ray , Models, Molecular , Solubility
...