Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Endocr Relat Cancer ; 30(12)2023 12 01.
Article En | MEDLINE | ID: mdl-37855322

Development of the mammary gland requires both proper hormone signaling and cross talk between the stroma and epithelium. While estrogen receptor (ERα) expression in the epithelium is essential for normal gland development, the role of this receptor in the stroma is less clear. Moreover, several lines of evidence suggest that mouse phenotypes of in utero exposure to endocrine disruption act through mesenchymal ERα in the developing fetus. We utilized a Twist2-cre mouse line to knock out mesenchymal ERα. Herein, we assessed mammary gland development in the context of mesenchymal ERα deletion. We also tested the effect of in utero bisphenol A (BPA) exposure to alter the tumor susceptibility in the mouse mammary tumor virus-neu (MMTV-neu) breast cancer mouse model. Mesenchymal ERα deletion resulted in altered reproductive tract development and atypical cytology associated with estrous cycling. The mammary gland demonstrated mature epithelial extension unlike complete ERα-knockout mice, but ductal extension was delayed and reduced compared to ERα-competent mice. Using the MMTV-Neu cancer susceptibility model, ERα-intact mice exposed to BPA had reduced tumor-free survival and overall survival compared to BPA-exposed mice having mesenchymal ERα deletion. This difference is specific for BPA exposure as vehicle-treated animals had no difference in tumor development between mice expressing and not expressing mesenchymal ERα. These data demonstrate that mesenchymal ERα expression is not required for ductal extension, nor does it influence cancer risk in this mouse model but does influence the cancer incidence associated with in utero BPA exposure.


Neoplasms , Receptors, Estrogen , Mice , Animals , Receptors, Estrogen/metabolism , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Mice, Knockout , Epithelium/metabolism , Neoplasms/metabolism , Mammary Glands, Animal/pathology
2.
Breast Cancer Res ; 22(1): 41, 2020 05 05.
Article En | MEDLINE | ID: mdl-32370801

BACKGROUND: In utero endocrine disruption is linked to increased risk of breast cancer later in life. Despite numerous studies establishing this linkage, the long-term molecular changes that predispose mammary cells to carcinogenic transformation are unknown. Herein, we investigated how endocrine disrupting compounds (EDCs) drive changes within the stroma that can contribute to breast cancer susceptibility. METHODS: We utilized bisphenol A (BPA) as a model of estrogenic endocrine disruption to analyze the long-term consequences in the stroma. Deregulated genes were identified by RNA-seq transcriptional profiling of adult primary fibroblasts, isolated from female mice exposed to in utero BPA. Collagen staining, collagen imaging techniques, and permeability assays were used to characterize changes to the extracellular matrix. Finally, gland stiffness tests were performed on exposed and control mammary glands. RESULTS: We identified significant transcriptional deregulation of adult fibroblasts exposed to in utero BPA. Deregulated genes were associated with cancer pathways and specifically extracellular matrix composition. Multiple collagen genes were more highly expressed in the BPA-exposed fibroblasts resulting in increased collagen deposition in the adult mammary gland. This transcriptional reprogramming of BPA-exposed fibroblasts generates a less permeable extracellular matrix and a stiffer mammary gland. These phenotypes were only observed in adult 12-week-old, but not 4-week-old, mice. Additionally, diethylstilbestrol, known to increase breast cancer risk in humans, also increases gland stiffness similar to BPA, while bisphenol S does not. CONCLUSIONS: As breast stiffness, extracellular matrix density, and collagen deposition have been directly linked to breast cancer risk, these data mechanistically connect EDC exposures to molecular alterations associated with increased disease susceptibility. These alterations develop over time and thus contribute to cancer risk in adulthood.


Endocrine Disruptors/toxicity , Extracellular Matrix/pathology , Mammary Glands, Animal/pathology , Prenatal Exposure Delayed Effects/pathology , Stromal Cells/pathology , Animals , Benzhydryl Compounds/toxicity , Estrogens, Non-Steroidal/pharmacology , Extracellular Matrix/drug effects , Extracellular Matrix/immunology , Female , Fibroblasts/immunology , Fibroblasts/pathology , Mammary Glands, Animal/drug effects , Mammary Glands, Animal/immunology , Mammary Glands, Animal/metabolism , Mice , Phenols/toxicity , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/metabolism , Stromal Cells/drug effects , Stromal Cells/immunology , Transcriptome
3.
Nat Commun ; 9(1): 5313, 2018 12 14.
Article En | MEDLINE | ID: mdl-30552321

Defining convergent and divergent mechanisms underlying the biogenesis and function of endomembrane organelles is fundamentally important in cell biology. In all eukaryotes, the Trans-Golgi Network (TGN) is the hub where the exocytic and endocytic pathways converge. To gain knowledge in the mechanisms underlying TGN biogenesis and function, we characterized TGNap1, a protein encoded by a plant gene of unknown function conserved with metazoans. We demonstrate that TGNap1 is a TGN protein required for the homeostasis of biosynthetic and endocytic traffic pathways. We also show that TGNap1 binds Rab6, YIP4 and microtubules. Finally, we establish that TGNap1 contributes to microtubule-dependent biogenesis, tracking and function of a TGN subset, likely through interaction with Rab6 and YIP4. Our results identify an important trafficking determinant at the plant TGN and reveal an unexpected reliance of post-Golgi traffic homeostasis and organelle biogenesis on microtubules in plants.


Adenosine Triphosphatases/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Golgi Apparatus/metabolism , Microtubules/metabolism , trans-Golgi Network/metabolism , Arabidopsis/genetics , Carrier Proteins , Cell Membrane/metabolism , Endocytosis/physiology , Genes, Plant , Homeostasis , Protein Domains , Protein Interaction Domains and Motifs , Protein Transport , rab GTP-Binding Proteins/metabolism , trans-Golgi Network/genetics
4.
Cell Rep ; 23(8): 2299-2307, 2018 05 22.
Article En | MEDLINE | ID: mdl-29791842

Through yet-undefined mechanisms, the plant endoplasmic reticulum (ER) has a critical role in endocytosis. The plant ER establishes a close association with endosomes and contacts the plasma membrane (PM) at ER-PM contact sites (EPCSs) demarcated by the ER membrane-associated VAMP-associated-proteins (VAP). Here, we investigated two plant VAPs, VAP27-1 and VAP27-3, and found an interaction with clathrin and a requirement for the homeostasis of clathrin dynamics at endocytic membranes and endocytosis. We also demonstrated direct interaction of VAP27-proteins with phosphatidylinositol-phosphate lipids (PIPs) that populate endocytic membranes. These results support that, through interaction with PIPs, VAP27-proteins bridge the ER with endocytic membranes and maintain endocytic traffic, likely through their interaction with clathrin.


Arabidopsis Proteins/metabolism , Arabidopsis/cytology , Arabidopsis/metabolism , Endocytosis , Endoplasmic Reticulum/metabolism , Membrane Proteins/metabolism , R-SNARE Proteins/metabolism , Arabidopsis/ultrastructure , Cell Membrane/metabolism , Clathrin/metabolism , Homeostasis , Lipids/chemistry , Protein Binding
...