Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
Microbiome ; 10(1): 242, 2022 12 28.
Article En | MEDLINE | ID: mdl-36575553

BACKGROUND: Considerable research has focussed on the importance of bacterial communities within the vertebrate gut microbiome (GM). However, studies investigating the significance of other microbial kingdoms, such as fungi, are notably lacking, despite their potential to influence host processes. Here, we characterise the fungal GM of individuals living in a natural population of Seychelles warblers (Acrocephalus sechellensis). We evaluate the extent to which fungal GM structure is shaped by environment and host factors, including genome-wide heterozygosity and variation at key immune genes (major histocompatibility complex (MHC) and Toll-like receptor (TLR)). Importantly, we also explore the relationship between fungal GM differences and subsequent host survival. To our knowledge, this is the first time that the genetic drivers and fitness consequences of fungal GM variation have been characterised for a wild vertebrate population. RESULTS: Environmental factors, including season and territory quality, explain the largest proportion of variance in the fungal GM. In contrast, neither host age, sex, genome-wide heterozygosity, nor TLR3 genotype was associated with fungal GM differences in Seychelles warblers. However, the presence of four MHC-I alleles and one MHC-II allele was associated with changes in fungal GM alpha diversity. Changes in fungal richness ranged from between 1 and 10 sequencing variants lost or gained; in some cases, this accounted for 20% of the fungal variants carried by an individual. In addition to this, overall MHC-I allelic diversity was associated with small, but potentially important, changes in fungal GM composition. This is evidenced by the fact that fungal GM composition differed between individuals that survived or died within 7 months of being sampled. CONCLUSIONS: Our results suggest that environmental factors play a primary role in shaping the fungal GM, but that components of the host immune system-specifically the MHC-may also contribute to the variation in fungal communities across individuals within wild populations. Furthermore, variation in the fungal GM can be associated with differential survival in the wild. Further work is needed to establish the causality of such relationships and, thus, the extent to which components of the GM may impact host evolution. Video Abstract.


Mycobiome , Songbirds , Animals , Genotype , Mycobiome/genetics , Seychelles , Songbirds/genetics , Songbirds/microbiology
2.
Microb Genom ; 8(7)2022 07.
Article En | MEDLINE | ID: mdl-35775972

Actinobacteria is an ancient phylum of Gram-positive bacteria with a characteristic high GC content to their DNA. The ActinoBase Wiki is focused on the filamentous actinobacteria, such as Streptomyces species, and the techniques and growth conditions used to study them. These organisms are studied because of their complex developmental life cycles and diverse specialised metabolism which produces many of the antibiotics currently used in the clinic. ActinoBase is a community effort that provides valuable and freely accessible resources, including protocols and practical information about filamentous actinobacteria. It is aimed at enabling knowledge exchange between members of the international research community working with these fascinating bacteria. ActinoBase is an anchor platform that underpins worldwide efforts to understand the ecology, biology and metabolic potential of these organisms. There are two key differences that set ActinoBase apart from other Wiki-based platforms: [1] ActinoBase is specifically aimed at researchers working on filamentous actinobacteria and is tailored to help users overcome challenges working with these bacteria and [2] it provides a freely accessible resource with global networking opportunities for researchers with a broad range of experience in this field.


Actinobacteria , Streptomyces , Actinobacteria/genetics , Anti-Bacterial Agents , Streptomyces/genetics
3.
Microb Genom ; 8(4)2022 04.
Article En | MEDLINE | ID: mdl-35446250

Symbioses between bacteria and their insect hosts can range from loose associations through to obligate interdependence. While fundamental evolutionary insights have been gained from the in-depth study of obligate mutualisms, there is increasing interest in the evolutionary potential of flexible symbiotic associations between hosts and their gut microbiomes. Understanding relationships between microbes and hosts also offers the potential for exploitation for insect control. Here, we investigate the gut microbiome of a global agricultural pest, the Mediterranean fruit fly (Ceratitis capitata). We used 16S rRNA profiling to compare the gut microbiomes of laboratory and wild strains raised on different diets and from flies collected from various natural plant hosts. The results showed that medfly guts harbour a simple microbiome that is primarily determined by the larval diet. However, regardless of the laboratory diet or natural plant host on which flies were raised, Klebsiella spp. dominated medfly microbiomes and were resistant to removal by antibiotic treatment. We sequenced the genome of the dominant putative Klebsiella spp. ('Medkleb') isolated from the gut of the Toliman wild-type strain. Genome-wide ANI analysis placed Medkleb within the K. oxytoca / michiganensis group. Species level taxonomy for Medkleb was resolved using a mutli-locus phylogenetic approach - and molecular, sequence and phenotypic analyses all supported its identity as K. michiganensis. Medkleb has a genome size (5825435 bp) which is 1.6 standard deviations smaller than the mean genome size of free-living Klebsiella spp. Medkleb also lacks some genes involved in environmental sensing. Moreover, the Medkleb genome contains at least two recently acquired unique genomic islands as well as genes that encode pectinolytic enzymes capable of degrading plant cell walls. This may be advantageous given that the medfly diet includes unripe fruits containing high proportions of pectin. The results suggest that the medfly harbours a commensal gut bacterium that may have developed a mutualistic association with its host and provide nutritional benefits.


Ceratitis capitata , Animals , Bacteria , Ceratitis capitata/genetics , Ceratitis capitata/microbiology , Klebsiella/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Symbiosis
4.
Microbiome ; 10(1): 41, 2022 03 08.
Article En | MEDLINE | ID: mdl-35256003

BACKGROUND: The gut microbiome (GM) can influence many biological processes in the host, impacting its health and survival, but the GM can also be influenced by the host's traits. In vertebrates, Major Histocompatibility Complex (MHC) genes play a pivotal role in combatting pathogens and are thought to shape the host's GM. Despite this-and the documented importance of both GM and MHC variation to individual fitness-few studies have investigated the association between the GM and MHC in the wild. RESULTS: We characterised MHC class I (MHC-I), MHC class II (MHC-II) and GM variation in individuals within a natural population of the Seychelles warbler (Acrocephalus sechellensis). We determined how the diversity and composition of the GM varied with MHC characteristics, in addition to environmental factors and other host traits. Our results show that the presence of specific MHC alleles, but not MHC diversity, influences both the diversity and composition of the GM in this population. MHC-I alleles, rather than MHC-II alleles, had the greatest impact on the GM. GM diversity was negatively associated with the presence of three MHC-I alleles (Ase-ua3, Ase-ua4, Ase-ua5), and one MHC-II allele (Ase-dab4), while changes in GM composition were associated with the presence of four different MHC-I alleles (Ase-ua1, Ase-ua7, Ase-ua10, Ase-ua11). There were no associations between GM diversity and TLR3 genotype, but GM diversity was positively correlated with genome-wide heterozygosity and varied with host age and field period. CONCLUSIONS: These results suggest that components of the host's immune system play a role in shaping the GM of wild animals. Host genotype-specifically MHC-I and to a lesser degree MHC-II variation-can modulate the GM, although whether this occurs directly, or indirectly through effects on host health, is unclear. Importantly, if immune genes can regulate host health through modulation of the microbiome, then it is plausible that the microbiome could also influence selection on immune genes. As such, host-microbiome coevolution may play a role in maintaining functional immunogenetic variation within natural vertebrate populations. Video abstract.


Gastrointestinal Microbiome , Selection, Genetic , Alleles , Animals , Gastrointestinal Microbiome/genetics , Genetic Variation/genetics , Immunogenetics , Vertebrates/genetics
5.
Anim Microbiome ; 3(1): 84, 2021 Dec 20.
Article En | MEDLINE | ID: mdl-34930493

BACKGROUND: The vertebrate gut microbiome (GM) can vary substantially across individuals within the same natural population. Although there is evidence linking the GM to health in captive animals, very little is known about the consequences of GM variation for host fitness in the wild. Here, we explore the relationship between faecal microbiome diversity, body condition, and survival using data from the long-term study of a discrete natural population of the Seychelles warbler (Acrocephalus sechellensis) on Cousin Island. To our knowledge, this is the first time that GM differences associated with survival have been fully characterised for a natural vertebrate species, across multiple age groups and breeding seasons. RESULTS: We identified substantial variation in GM community structure among sampled individuals, which was partially explained by breeding season (5% of the variance), and host age class (up to 1% of the variance). We also identified significant differences in GM community membership between adult birds that survived, versus those that had died by the following breeding season. Individuals that died carried increased abundances of taxa that are known to be opportunistic pathogens, including several ASVs in the genus Mycobacterium. However, there was no association between GM alpha diversity (the diversity of bacterial taxa within a sample) and survival to the next breeding season, or with individual body condition. Additionally, we found no association between GM community membership and individual body condition. CONCLUSIONS: These results demonstrate that components of the vertebrate GM can be associated with host fitness in the wild. However, further research is needed to establish whether changes in bacterial abundance contribute to, or are only correlated with, differential survival; this will add to our understanding of the importance of the GM in the evolution of host species living in natural populations.

6.
BMC Biol ; 19(1): 205, 2021 09 15.
Article En | MEDLINE | ID: mdl-34526023

BACKGROUND: The cuticular microbiomes of Acromyrmex leaf-cutting ants pose a conundrum in microbiome biology because they are freely colonisable, and yet the prevalence of the vertically transmitted bacteria Pseudonocardia, which contributes to the control of Escovopsis fungus garden disease, is never compromised by the secondary acquisition of other bacterial strains. Game theory suggests that competition-based screening can allow the selective recruitment of antibiotic-producing bacteria from the environment, by providing abundant resources to foment interference competition between bacterial species and by using Pseudonocardia to bias the outcome of competition in favour of antibiotic producers. RESULTS: Here, we use RNA-stable isotope probing (RNA-SIP) to confirm that Acromyrmex ants can maintain a range of microbial symbionts on their cuticle by supplying public resources. We then used RNA sequencing, bioassays, and competition experiments to show that vertically transmitted Pseudonocardia strains produce antibacterials that differentially reduce the growth rates of other microbes, ultimately biassing the bacterial competition to allow the selective establishment of secondary antibiotic-producing strains while excluding non-antibiotic-producing strains that would parasitise the symbiosis. CONCLUSIONS: Our findings are consistent with the hypothesis that competition-based screening is a plausible mechanism for maintaining the integrity of the co-adapted mutualism between the leaf-cutting ant farming symbiosis and its defensive microbiome. Our results have broader implications for explaining the stability of other complex symbioses involving horizontal acquisition.


Microbiota , Animals , Anti-Bacterial Agents/pharmacology , Ants , Biological Evolution , RNA , Symbiosis
7.
Front Mol Biosci ; 8: 686110, 2021.
Article En | MEDLINE | ID: mdl-34222338

Streptomyces species are saprophytic soil bacteria that produce a diverse array of specialized metabolites, including half of all known antibiotics. They are also rhizobacteria and plant endophytes that can promote plant growth and protect against disease. Several studies have shown that streptomycetes are enriched in the rhizosphere and endosphere of the model plant Arabidopsis thaliana. Here, we set out to test the hypothesis that they are attracted to plant roots by root exudates, and specifically by the plant phytohormone salicylate, which they might use as a nutrient source. We confirmed a previously published report that salicylate over-producing cpr5 plants are colonized more readily by streptomycetes but found that salicylate-deficient sid2-2 and pad4 plants had the same levels of root colonization by Streptomyces bacteria as the wild-type plants. We then tested eight genome sequenced Streptomyces endophyte strains in vitro and found that none were attracted to or could grow on salicylate as a sole carbon source. We next used 13CO2 DNA stable isotope probing to test whether Streptomyces species can feed off a wider range of plant metabolites but found that Streptomyces bacteria were outcompeted by faster growing proteobacteria and did not incorporate photosynthetically fixed carbon into their DNA. We conclude that, given their saprotrophic nature and under conditions of high competition, streptomycetes most likely feed on more complex organic material shed by growing plant roots. Understanding the factors that impact the competitiveness of strains in the plant root microbiome could have consequences for the effective application of biocontrol strains.

8.
Environ Microbiome ; 16(1): 12, 2021 Jun 21.
Article En | MEDLINE | ID: mdl-34154664

BACKGROUND: Conventional methods of agricultural pest control and crop fertilisation are unsustainable. To meet growing demand, we must find ecologically responsible means to control disease and promote crop yields. The root-associated microbiome can aid plants with disease suppression, abiotic stress relief, and nutrient bioavailability. The aim of the present work was to profile the community of bacteria, fungi, and archaea associated with the wheat rhizosphere and root endosphere in different conditions. We also aimed to use 13CO2 stable isotope probing (SIP) to identify microbes within the root compartments that were capable of utilising host-derived carbon. RESULTS: Metabarcoding revealed that community composition shifted significantly for bacteria, fungi, and archaea across compartments. This shift was most pronounced for bacteria and fungi, while we observed weaker selection on the ammonia oxidising archaea-dominated archaeal community. Across multiple soil types we found that soil inoculum was a significant driver of endosphere community composition, however, several bacterial families were identified as core enriched taxa in all soil conditions. The most abundant of these were Streptomycetaceae and Burkholderiaceae. Moreover, as the plants senesce, both families were reduced in abundance, indicating that input from the living plant was required to maintain their abundance in the endosphere. Stable isotope probing showed that bacterial taxa within the Burkholderiaceae family, among other core enriched taxa such as Pseudomonadaceae, were able to use root exudates, but Streptomycetaceae were not. CONCLUSIONS: The consistent enrichment of Streptomycetaceae and Burkholderiaceae within the endosphere, and their reduced abundance after developmental senescence, indicated a significant role for these families within the wheat root microbiome. While Streptomycetaceae did not utilise root exudates in the rhizosphere, we provide evidence that Pseudomonadaceae and Burkholderiaceae family taxa are recruited to the wheat root community via root exudates. This deeper understanding crop microbiome formation will enable researchers to characterise these interactions further, and possibly contribute to ecologically responsible methods for yield improvement and biocontrol in the future.

9.
Appl Environ Microbiol ; 86(16)2020 08 03.
Article En | MEDLINE | ID: mdl-32561579

Streptomyces bacteria are ubiquitous in soils and are well known for producing secondary metabolites, including antimicrobials. Increasingly, they are being isolated from plant roots, and several studies have shown they are specifically recruited to the rhizosphere and the endosphere of the model plant Arabidopsis thaliana Here, we test the hypothesis that Streptomyces bacteria have a beneficial effect on A. thaliana growth and could potentially be used as plant probiotics. To do this, we selectively isolated streptomycetes from surface-washed A. thaliana roots and generated high-quality genome sequences for five strains, which we named L2, M2, M3, N1, and N2. Reinfection of A. thaliana plants with L2, M2, and M3 significantly increased plant biomass individually and in combination, whereas N1 and N2 had a negative effect on plant growth, likely due to their production of polyene natural products which can bind to phytosterols and reduce plant growth. N2 exhibits broad-spectrum antimicrobial activity and makes filipin-like polyenes, including 14-hydroxyisochainin which inhibits the take-all fungus, Gaeumannomyces graminis var. tritici N2 antifungal activity as a whole was upregulated ∼2-fold in response to indole-3-acetic acid (IAA), suggesting a possible role during competition in the rhizosphere. Furthermore, coating wheat seeds with N2 spores protected wheat seedlings against take-all disease. We conclude that at least some soil-dwelling streptomycetes confer growth-promoting benefits on A. thaliana, while others might be exploited to protect crops against disease.IMPORTANCE We must reduce reliance on agrochemicals, and there is increasing interest in using bacterial strains to promote plant growth and protect against disease. Our study follows up reports that Arabidopsis thaliana specifically recruits Streptomyces bacteria to its roots. We test the hypotheses that they offer benefits to their A. thaliana hosts and that strains isolated from these plants might be used as probiotics. We isolated Streptomyces strains from A. thaliana roots and genome sequenced five phylogenetically distinct strains. Genome mining and bioassays indicated that all five have plant growth-promoting properties, including production of indole-3-acetic acid (IAA), siderophores, and aminocyclopropane-1-carboxylate (ACC) deaminase. Three strains significantly increased A. thaliana growth in vitro and in combination in soil. Another produces potent filipin-like antifungals and protected germinating wheat seeds against the fungal pathogen Gaeumannomyces graminis var. tritici (wheat take-all fungus). We conclude that introducing Streptomyces strains into the root microbiome provides significant benefits to plants.


Arabidopsis/physiology , Endophytes/physiology , Host Microbial Interactions , Streptomyces/physiology , Triticum/physiology , Arabidopsis/growth & development , Arabidopsis/microbiology , Seedlings/growth & development , Seedlings/microbiology , Soil Microbiology , Triticum/growth & development , Triticum/microbiology
10.
PLoS Comput Biol ; 15(5): e1007109, 2019 05.
Article En | MEDLINE | ID: mdl-31150382

Understanding the mechanisms that promote the assembly and maintenance of host-beneficial microbiomes is an open problem. Empirical evidence supports the idea that animal and plant hosts can combine 'private resources' with the ecological phenomenon known as 'community bistability' to favour some microbial strains over others. We briefly review evidence showing that hosts can: (i) protect the growth of beneficial strains in an isolated habitat, (ii) use antibiotics to suppress non-beneficial, competitor strains, and (iii) provide resources that only beneficial strains are able to translate into an increased rate of growth, reproduction, or antibiotic production. We then demonstrate in a spatially explicit, individual-based model that these three mechanisms act similarly by selectively promoting the initial proliferation of preferred strains, that is, by acting as a private resource. The faster early growth of preferred strains, combined with the phenomenon of 'community bistability,' allows those strains to continue to dominate the microbiome even after the private resource is withdrawn or made public. This is because after a beneficial colony reaches a sufficiently large size, it can resist invasion by parasites without further private support from the host. We further explicitly model localized microbial interactions and diffusion dynamics, and we show that an intermediate level of antibiotic diffusion is the most efficient mechanism in promoting preferred strains and that there is a wide range of parameters under which hosts can promote the assembly of a self-sustaining defensive microbiome. This in turn supports the idea that hosts readily evolve to promote host-beneficial defensive microbiomes.


Host Microbial Interactions/physiology , Microbiota/physiology , Animals , Anti-Bacterial Agents/biosynthesis , Computational Biology , Ecosystem , Models, Biological , Symbiosis/physiology
11.
Pathogens ; 8(2)2019 Jun 13.
Article En | MEDLINE | ID: mdl-31200493

A growing world population and an increasing demand for greater food production requires that crop losses caused by pests and diseases are dramatically reduced. Concurrently, sustainability targets mean that alternatives to chemical pesticides are becoming increasingly desirable. Bacteria in the plant root microbiome can protect their plant host against pests and pathogenic infection. In particular, Streptomyces species are well-known to produce a range of secondary metabolites that can inhibit the growth of phytopathogens. Streptomyces are abundant in soils and are also enriched in the root microbiomes of many different plant species, including those grown as economically and nutritionally valuable cereal crops. In this review we discuss the potential of Streptomyces to protect against some of the most damaging cereal crop diseases, particularly those caused by fungal pathogens. We also explore factors that may improve the efficacy of these strains as biocontrol agents in situ, as well as the possibility of exploiting plant mechanisms, such as root exudation, that enable the recruitment of microbial species from the soil to the root microbiome. We argue that a greater understanding of these mechanisms may enable the development of protective plant root microbiomes with a greater abundance of beneficial bacteria, such as Streptomyces species.

12.
Nat Commun ; 9(1): 2208, 2018 06 07.
Article En | MEDLINE | ID: mdl-29880868

Acromyrmex leafcutter ants form a mutually beneficial symbiosis with the fungus Leucoagaricus gongylophorus and with Pseudonocardia bacteria. Both are vertically transmitted and actively maintained by the ants. The fungus garden is manured with freshly cut leaves and provides the sole food for the ant larvae, while Pseudonocardia cultures are reared on the ant-cuticle and make antifungal metabolites to help protect the cultivar against disease. If left unchecked, specialized parasitic Escovopsis fungi can overrun the fungus garden and lead to colony collapse. We report that Escovopsis upregulates the production of two specialized metabolites when it infects the cultivar. These compounds inhibit Pseudonocardia and one, shearinine D, also reduces worker behavioral defenses and is ultimately lethal when it accumulates in ant tissues. Our results are consistent with an active evolutionary arms race between Pseudonocardia and Escovopsis, which modifies both bacterial and behavioral defenses such that colony collapse is unavoidable once Escovopsis infections escalate.


Actinobacteria/drug effects , Agaricales/physiology , Ants/drug effects , Hypocreales/metabolism , Indole Alkaloids/toxicity , Actinobacteria/physiology , Animals , Ants/microbiology , Ants/physiology , Biological Evolution , Biosynthetic Pathways/genetics , Genome, Fungal/genetics , Host-Pathogen Interactions/physiology , Hypocreales/genetics , Hypocreales/isolation & purification , Indole Alkaloids/isolation & purification , Indole Alkaloids/metabolism , Microbial Sensitivity Tests , Sequence Analysis, DNA , Symbiosis/drug effects
13.
FEMS Microbiol Rev ; 41(3): 392-416, 2017 05 01.
Article En | MEDLINE | ID: mdl-28521336

Actinomycetes are a diverse family of filamentous bacteria that produce a plethora of natural products relevant for agriculture, biotechnology and medicine, including the majority of the antibiotics we use in the clinic. Rather than as free-living bacteria, many actinomycetes have evolved to live in symbiosis with among others plants, fungi, insects and sponges. As a common theme, these organisms profit from the natural products and enzymes produced by the actinomycetes, for example, for protection against pathogenic microbes, for growth promotion or for the degradation of complex natural polymers such as lignocellulose. At the same time, the actinomycetes benefit from the resources of the hosts they interact with. Evidence is accumulating that these interactions control the expression of biosynthetic gene clusters and have played a major role in the evolution of the high chemical diversity of actinomycete-produced secondary metabolites. Many of the biosynthetic gene clusters for antibiotics are poorly expressed under laboratory conditions, but they are likely expressed in response to host-specific demands. Here, we review the environmental triggers and cues that control natural product formation by actinomycetes and provide pointers as to how these insights may be harnessed for drug discovery.


Actinomyces/metabolism , Anti-Bacterial Agents/biosynthesis , Antibiosis/physiology , Fungi/metabolism , Streptomyces/metabolism , Symbiosis/physiology , Animals , Antibiosis/genetics , Biological Products/metabolism , Coculture Techniques , Insecta/microbiology , Multigene Family/genetics , Plant Roots/metabolism , Plant Roots/microbiology , Plants/metabolism , Plants/microbiology
14.
Front Microbiol ; 7: 2073, 2016.
Article En | MEDLINE | ID: mdl-28082956

The attine ants of South and Central America are ancient farmers, having evolved a symbiosis with a fungal food crop >50 million years ago. The most evolutionarily derived attines are the Atta and Acromyrmex leafcutter ants, which harvest fresh leaves to feed their fungus. Acromyrmex and many other attines vertically transmit a mutualistic strain of Pseudonocardia and use antifungal compounds made by these bacteria to protect their fungal partner against co-evolved fungal pathogens of the genus Escovopsis. Pseudonocardia mutualists associated with the attines Apterostigma dentigerum and Trachymyrmex cornetzi make novel cyclic depsipeptide compounds called gerumycins, while a mutualist strain isolated from derived Acromyrmex octospinosus makes an unusual polyene antifungal called nystatin P1. The novelty of these antimicrobials suggests there is merit in exploring secondary metabolites of Pseudonocardia on a genome-wide scale. Here, we report a genomic analysis of the Pseudonocardia phylotypes Ps1 and Ps2 that are consistently associated with Acromyrmex ants collected in Gamboa, Panama. These were previously distinguished solely on the basis of 16S rRNA gene sequencing but genome sequencing of five Ps1 and five Ps2 strains revealed that the phylotypes are distinct species and each encodes between 11 and 15 secondary metabolite biosynthetic gene clusters (BGCs). There are signature BGCs for Ps1 and Ps2 strains and some that are conserved in both. Ps1 strains all contain BGCs encoding nystatin P1-like antifungals, while the Ps2 strains encode novel nystatin-like molecules. Strains show variations in the arrangement of these BGCs that resemble those seen in gerumycin gene clusters. Genome analyses and invasion assays support our hypothesis that vertically transmitted Ps1 and Ps2 strains have antibacterial activity that could help shape the cuticular microbiome. Thus, our work defines the Pseudonocardia species associated with Acromyrmex ants and supports the hypothesis that Pseudonocardia species could provide a valuable source of new antimicrobials.

...