Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
1.
Chem Commun (Camb) ; 60(55): 7073-7076, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38888188

RESUMEN

Structure-reactivity investigations and quantum-chemical parametrization of steric and electronic properties of geometrically constrained iminophosphoranes enabled the design of new frustrated Lewis pairs and revealed unusual properties at the phosphonium center embedded in the cage-shaped triptycene tricyclic scaffold.

2.
Angew Chem Int Ed Engl ; : e202407503, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38781114

RESUMEN

Sterically hindered pyridines embedded in a three-dimensional triptycene framework have been synthesized, and their resolution by chiral HPLC enabled access to unprecedented enantiopure pyridines exceeding the known steric limits. The design principles for new axially chiral pyridine derivatives are then described. To rationalize their associations with Lewis acids and transition metals, a comprehensive determination of the steric and electronic parameters for this new class of pyridines was performed. This led to the general parameterization of the steric parameters (percent buried volume %VBur, Tolman cone angle θ, and He8_steric descriptor) for a large set of two- and three-dimensional pyridine derivatives. These parameters are shown to describe quantitatively their interactions with carbon- and boron-centered Lewis acids and were used to predict the ΔG° of association with the prototypical B(C6F5)3 Lewis acid widely used in frustrated Lewis pair catalysis. This first parameterization of pyridine sterics is a fundamental basis for the future development of predictive reactivity models and for guiding new applications of bulky and chiral pyridines in organocatalysis, frustrated Lewis pairs, and transition-metal catalysis.

3.
J Org Chem ; 89(10): 6853-6864, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38661472

RESUMEN

Macrocyclization has proven to be a useful design strategy in the development of efficient anion receptors. In addition to the ring size, the overall preorganization due to structural rigidity is key. To explore this in the context of developing an efficient pyrophosphate receptor, three macrocycles featuring a 26-membered interior ring size and similar H-bonding motifs have been synthesized, and their anion binding ability has been investigated. Computational studies and nuclear magnetic resonance (NMR) data showed different degrees of preorganization as a result of differences in flexibility. The interaction of the three macrocycles with chloride, dihydrogen phosphate, and dihydrogen pyrophosphate was investigated in solution by NMR and ultraviolet-visible spectroscopy and in the solid state by X-ray crystallography. The tetrahydrazone-based macrocycle featuring intermediate flexibility exhibited the best affinity for all three anions investigated. Our results suggest that in addition to the proper preorganization of binding groups in a macrocycle a certain degree of flexibility is also required for an optimal affinity with the target guest.

4.
Chem Commun (Camb) ; 59(85): 12739-12742, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37801289

RESUMEN

This work extends the scope of microfluidic-based crystallization methods by introducing solid microcapsules. Hundreds of perfectly similar microcapsules were generated per second, allowing a fast screening of crystallization conditions. XRD analyses were performed directly on encapsulated single crystals demonstrating the potential of this process for the characterization of compounds, including screening polymorphism.

5.
Commun Biol ; 6(1): 1024, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37817000

RESUMEN

Mycobacterium tuberculosis phosphoserine phosphatase MtSerB2 is of interest as a new antituberculosis target due to its essential metabolic role in L-serine biosynthesis and effector functions in infected cells. Previous works indicated that MtSerB2 is regulated through an oligomeric transition induced by L-Ser that could serve as a basis for the design of selective allosteric inhibitors. However, the mechanism underlying this transition remains highly elusive due to the lack of experimental structural data. Here we describe a structural, biophysical, and enzymological characterisation of MtSerB2 oligomerisation in the presence and absence of L-Ser. We show that MtSerB2 coexists in dimeric, trimeric, and tetrameric forms of different activity levels interconverting through a conformationally flexible monomeric state, which is not observed in two near-identical mycobacterial orthologs. This morpheein behaviour exhibited by MtSerB2 lays the foundation for future allosteric drug discovery and provides a starting point to the understanding of its peculiar multifunctional moonlighting properties.


Asunto(s)
Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Catálisis
6.
Chemistry ; 29(67): e202302402, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37665254

RESUMEN

The hydrolysis of imidazolinium chlorides takes place readily in a basic water/dichloromethane biphasic mixture at room temperature. Experimental parameters were optimized to afford full conversions and high yields of γ-aminoformamides starting from twelve symmetrical substrates with alkyl or aryl substituents on their nitrogen atoms, and five unsymmetrical 1-alkyl-3-arylimidazolinium chlorides. NMR and XRD analyses showed that the cleavage of unsymmetrical salts led to γ-alkylamino-N-arylformamides with a high regioselectivity and that bulky alkyl or aryl groups on the formamide moiety led to the isolation of the (E)-isomer in high stereoisomeric purity (>95 %), whereas smaller and more flexible alkyl substituents afforded mixtures of (E)- and (Z)-rotamers. Control experiments showed that the hydrolysis of 1,3-dimesitylimidazolinium chloride (SIMes ⋅ HCl) did not occur readily in pure or acidic water and that the presence of bulky aromatic substituents on the nitrogen atoms of 1,3-bis(2,6-diisopropylphenyl)imidazolinium chloride (SIDip ⋅ HCl) efficiently slowed down its hydrolysis under basic aqueous conditions. Most strikingly, this work highlighted the critical influence of the counteranion on the reactivity of imidazolinium cations. Indeed, the chloride salts underwent a facile hydrolysis in the presence of water and Na2 CO3 , whereas various other NHC ⋅ HX derivatives reacted much slower or remained essentially inert under these conditions.

7.
J Biomol Struct Dyn ; : 1-14, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37301605

RESUMEN

The human indoleamine-2,3-dioxygenase 2 (hIDO2) protein is growing of interest as it is increasingly implicated in multiple diseases (cancer, autoimmune diseases, COVID-19). However, it is only poorly reported in the literature. Its mode of action remains unknown because it does not seem to catalyze the reaction for which it is attributed: the degradation of the L-Tryptophan into N-formyl-kynurenine. This contrasts with its paralog, the human indoleamine-2,3-dioxygenase 1 (hIDO1), which has been extensively studied in the literature and for which several inhibitors are already in clinical trials. Yet, the recent failure of one of the most advanced hIDO1 inhibitors, the Epacadostat, could be caused by a still unknown interaction between hIDO1 and hIDO2. In order to better understand the mechanism of hIDO2, and in the absence of experimental structural data, a computational study mixing homology modeling, Molecular Dynamics, and molecular docking was conducted. The present article highlights an exacerbated lability of the cofactor as well as an inadequate positioning of the substrate in the active site of hIDO2, which might bring part of an answer to its lack of activity.Communicated by Ramaswamy H. Sarma.

8.
Chemistry ; 29(38): e202301146, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37078439

RESUMEN

Isolation and characterization of highly reactive intermediates are crucial to understand the nature of chemical reactivity. Accordingly, the reactivity of weakly coordinating anions (WCA), usually used to stabilized cationic super electrophiles are of fundamental interest. When a variety of WCA are known to form stable σ-complexes with a proton, inducing Brønsted super acidity, bis-coordinated weak-coordinated anions are much more elusive and considered as long-sought reactive species. In this work, the chemistry of borylated sulfate, triflimidate and triflate anions were scouted in details with the aim of synthetizing the unique analogs of protonated Brønsted superacids. Those complexes were formed by successive borylation with a 9-boratriptycene derived Lewis super acid paired with a weak coordinated anion, characterized in solution and in the solid state and exhibit unique structures and reactivities.

9.
Eur J Med Chem ; 245(Pt 1): 114935, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36403421

RESUMEN

Tuberculosis is currently still one of the leading causes of death from a treatable pathogen. The proportion of cases of resistance to common antibiotics is frequently increasing and the development of new drugs with new therapeutic targets is becoming necessary. The Mycobacterium tuberculosis phosphoserine phosphatase MtSerB2 is an interesting enzyme to target in drug design because of its ability to allow immune evasion of the bacteria. Research has already been carried out on this protein both from a mechanistic point of view and from the point of view of its inhibition by trisubstituted harmine derivatives. Based on this work, a new approach based on virtual screening is presented in the selection of fragment-sized harmine-derived compounds as well as chelators to target the catalytic magnesium of MtSerB2. The selection of a minimum list of fragments is explained as well as the screening cascade (DSF, Ligand-based NMR, High concentration enzymatic assay) to characterise their affinity for MtSerB2. Crystallogenesis assays have provided structural information on some promising fragments and the development of a pharmacophore model with the structural elements necessary for the development of more complex inhibitors. Ultimately, this work on fragment growth would allow the development of antimycobacterial molecules inhibiting MtSerB2 as well as the growth of the pathogen.


Asunto(s)
Harmina , Tuberculosis , Humanos , Descubrimiento de Drogas , Monoéster Fosfórico Hidrolasas , Antibacterianos
10.
J Phys Condens Matter ; 34(49)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36223781

RESUMEN

A well-known method to characterize non-covalent interactions consists in the topological analysis of electron density distribution (EDD) functions, complemented by the search for minima in the reduced density gradient (RDG) distributions. Here, we characterize intermolecular interactions occurring in crystals of benzyl chalcocyanate compounds through bond critical points (BCP) of the promolecular electron density (ED) built from the crystallographic Cromer-Mann parameters, at several smoothing levelst. The trajectories formed by thet-dependent BCP locations are interpreted in terms of the intermolecular interactions occurring within the crystal arrangements. Chalcogen…nitro BCPs are clearly present in the unsmoothed EDDs but are annihilated astincreases, while chalcogen…chalcogen BCPs appear and are among the only BCPs left at the highest smoothing level. The chalcogen bonds are differentiated from the other chalcogen interactions through the linear chalcogen…BCP…nitro geometry at low smoothing level and their more negative Laplacian values. The annihilation of CPs can be followed by the apparition of a RDG minimum, associated with a very weak interaction. Along the BCP trajectories, the Laplacian shows a progressive concentration of the ED in the intermolecular space within the crystals and adopts the most negative values at the shortest atom…atom separations. At the termination point of a BCP trajectory, the drastic increase of the ellipticity value illustrates the flattening of the EDD.

11.
Acta Crystallogr E Crystallogr Commun ; 78(Pt 9): 874-879, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36072517

RESUMEN

An easily accessible experimental set-up to grow large single crystals of two sweeteners readily available in supermarkets, erythritol and xylitol, is described. The crystallization of these compounds illustrates the principles of crystallization by evaporation. As these artificial sweeteners are also known to induce a cool sensation in the mouth, the crystal-growing experiment is complemented with a simple calorimetric set-up to demonstrate the endothermic nature of the dissolution of the selected sweeteners in a more qu-anti-tative approach by measuring the heat of dissolution (ΔH diss). The choice of these two sweeteners also allows use of the freely available WebCSD and Mercury tools to visualize their three-dimensional structure, crystal packing and powder diffractograms, and to deepen stereochemical concepts such as stereoisomers and meso compounds.

12.
Chem Commun (Camb) ; 58(42): 6255-6258, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35521967

RESUMEN

Here we present the anion binding and anion transport properties of a series of calix[6]arenes decorated on their small rim with either halogen bond or hydrogen bond donating groups. We show that the halogen bond donating iodotriazole groups enable highly selective transport of chloride and nitrate anions, without transport of protons or hydroxide, at rates similar to those observed with thiourea or squaramide groups.


Asunto(s)
Calixarenos , Halógenos , Aniones/química , Calixarenos/química , Cloruros , Halógenos/química , Enlace de Hidrógeno , Transporte Iónico
13.
Acta Crystallogr E Crystallogr Commun ; 78(Pt 4): 418-424, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35492280

RESUMEN

Recently, inter-est in the isosteric replacement of a nitro-gen atom to selenium, sulfur or oxygen atoms has been highlighted in the design of potential inhibitors for cancer research. In this context, the structures of 5-(1H-indol-3-yl)-2,1,3-benzotriazole derivatives [5-(1H-indol-3-yl)-2,1,3-benzo-thia-diazole (bS, C14H9N3S) and 5-(1H-indol-3-yl)-2,1,3-benzoxa-diazole (bO, C14H9N3O)], as well as a synthesis inter-mediate of the selenated bioisostere [5-[1-(benzensulfon-yl)-1H-indol-3-yl]-2,1,3-benzoselena-diazole (p-bSe, C20H13N3O2SSe)] were determined using single-crystal X-ray diffraction (SCXRD) analyses. Despite being analogues, different crystal packing, torsion angles and supra-molecular features were observed, depending on the substitution of the central atoms of the benzotriazole. In particular, chalcogen inter-actions were described in the case of p-bSe and not in the bS and bO derivatives. An investigation by ab initio computational methods was therefore conducted to understand the effect of the substitution on the ability to form chalcogen bonds and the flexibility of the compounds.

14.
Front Pharmacol ; 13: 864336, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35450047

RESUMEN

Four new carboxylates complexes with general formula R2SnL2 and R3SnL, where R = n-butyl (1, 3), methyl (2, 4) and L = 4-Chlorophenoxyacetate, were synthesized in significant yields. FT-IR analysis revealed a chelating (1 and 2) and a bridging bidentate (3 and 4) coordination modes for the carboxylate ligand in solid state which was further confirmed by the single crystal X-ray analysis of complex 4. The NMR data (1H, 13C and 119Sn) revealed a higher coordination number around the tin center in R2SnL2 (1 and 2) compared to R3SnL (3 and 4). A close matching was observed between the experimental and calculated structures (obtained at B3LYP/6-31G* + LANL2DZ basis set). Quantum chemical analysis indicates that the carboxylate moiety has the major contribution in the formation of filled and unfilled orbitals as well as in ligand to ligand intramolecular charge transfer during the electronic transitions. The cytotoxicity data of the screened compounds evaluated against lung cancer cell line (A549) and normal lung fibroblast cell line (MRC-5) revealed that 1, 3 and 4 have shown dose dependent cytotoxic effects while HL and 2 have shown steady and low cytotoxic activities. The antibacterial activity of complexes 1-4 is higher than that of HL. Molecular docking study showed an intercalation binding mode for complex 3 with DNA (docking score = -3.6005) involving four polar interactions. Complex 3 docking with tubulin (PDB ID 1SA0) with colchicine as a target protein resulted in three polar interactions (docking score -5.2957). Further, the docking analysis of the HL and 1-4 has shown an adequate interactions with the coronavirus SARS-CoV-2 spike protein, nucleocapsid protein and human angiotensin converting enzyme (ACE2).

15.
Eur J Med Chem ; 230: 114102, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35074589

RESUMEN

Lactate dehydrogenases (LDHs) are tetrameric enzymes of therapeutic relevance for cancer therapy due to their important implications in cancer cell metabolism. LDH active site inhibition suffers from different drawbacks due to several features such as high cellular concentration and a shared active site among the dehydrogenase family. Conversely, targeting the LDH oligomeric state is an exciting strategy that could provide a suitable alternative to active-site inhibition. In the present study, we developed a biophysical screening cascade to probe the LDHs tetrameric interface. Using nanoscale differential fluorimetry (nanoDSF) as a primary screening method, we identified a series of hits that destabilize the tetrameric protein. From this primary screening, we validated selected hits using saturation transfer difference nuclear magnetic resonance (STD NMR) and microscale thermophoresis (MST) as a combination of orthogonal biophysical techniques. Finally, we characterized the validated hits and demonstrated that they specifically interact at the tetrameric interface of LDH-1 and LDH-5 and can inhibit the LDH tetramerization process. Overall, this work provides a convenient method for screening ligands at the LDH tetrameric interface and has identified promising hits suitable for further optimization. We believe that this biophysical screening cascade, especially the use of (nano)DSF, could be extended to other homomeric proteins.


Asunto(s)
Lactato Deshidrogenasas , Fluorometría , Lactato Deshidrogenasas/antagonistas & inhibidores , Ligandos , Espectroscopía de Resonancia Magnética
16.
Angew Chem Int Ed Engl ; 61(7): e202112342, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-34623002

RESUMEN

The rational design of a geometrically constrained boron Lewis superacid featuring exceptional structure and reactivity is disclosed. It enabled the formation of non-classical electron deficient B-H-B type of bonding, which was supported by spectroscopic and structural parameters as well as computational studies. Taming the pyramidal Lewis acid electrophilicity through weak coordinating anion dissociation enabled a series of highly challenging chemical transformations, such as Csp2 -H and Csp3 -H activation under a frustrated Lewis pair regime and the cleavage of Csp3 -Si bonds. The demonstration of such rich chemical behaviour and flexibility on a single molecular compound makes it a unique mediator of chemical transformations generally restricted to transition metals.

17.
Acta Crystallogr E Crystallogr Commun ; 77(Pt 11): 1095-1098, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34868643

RESUMEN

The structure of ethyl 1-[N-(4-methyl-phen-yl)-N-(methyl-sulfon-yl)alan-yl]piperidine-4-carboxyl-ate, C19H28N2O5S, I, a compound of inter-est as activator of Ubiquitin C-terminal Hydro-lase-L1 (UCH-L1), was determined by single-crystal X-ray diffraction (SCXRD) analysis. In order to find new activators, a derivative of compound I, namely, 1-[N-(4-methyl-phen-yl)-N-(methyl-sulfon-yl)alan-yl]piperidine-4-carb-oxy-lic acid, C17H24N2O5S, II, was studied. The synthesis and crystal structure are also reported. Despite being analogues, different crystal packings are observed. Compound II bears a carb-oxy-lic group, which favors a strong hydrogen bond. A polymorph risk assessment was carried out to study inter-actions in compound II.

18.
Int J Tryptophan Res ; 14: 11786469211052964, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34949925

RESUMEN

Protein dynamics governs most of the fundamental processes in the human body. Particularly, the dynamics of loops located near an active site can be involved in the positioning of the substrate and the reaction mechanism. The understanding of the functioning of dynamic loops is therefore a challenge, and often requires the use of a multi-disciplinary approach mixing, for example, crystallographic experiments and molecular dynamics simulations. In the present work, the dynamic behavior of the JK-loop of the human indoleamine 2,3-dioxygenase 1 hemoprotein, a target for immunotherapy, is investigated. To overcome the lack of knowledge on this dynamism, the study reported here is based on 3 crystal structures presenting different conformations of the loop, completed with molecular dynamics trajectories and MM-GBSA analyses, in order to trace the reaction pathway of the enzyme. In addition, the crystal structures identify an exo site in the small unit of the enzyme, that is populated redundantly by the substrate or the product of the reaction. The role of this newer reported exo site still needs to be investigated.

19.
PLoS Pathog ; 17(9): e1009887, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34525130

RESUMEN

Brucellosis is one of the most widespread bacterial zoonoses worldwide. Here, our aim was to identify the effector mechanisms controlling the early stages of intranasal infection with Brucella in C57BL/6 mice. During the first 48 hours of infection, alveolar macrophages (AMs) are the main cells infected in the lungs. Using RNA sequencing, we identified the aconitate decarboxylase 1 gene (Acod1; also known as Immune responsive gene 1), as one of the genes most upregulated in murine AMs in response to B. melitensis infection at 24 hours post-infection. Upregulation of Acod1 was confirmed by RT-qPCR in lungs infected with B. melitensis and B. abortus. We observed that Acod1-/- C57BL/6 mice display a higher bacterial load in their lungs than wild-type (wt) mice following B. melitensis or B. abortus infection, demonstrating that Acod1 participates in the control of pulmonary Brucella infection. The ACOD1 enzyme is mostly produced in mitochondria of macrophages, and converts cis-aconitate, a metabolite in the Krebs cycle, into itaconate. Dimethyl itaconate (DMI), a chemically-modified membrane permeable form of itaconate, has a dose-dependent inhibitory effect on Brucella growth in vitro. Interestingly, structural analysis suggests the binding of itaconate into the binding site of B. abortus isocitrate lyase. DMI does not inhibit multiplication of the isocitrate lyase deletion mutant ΔaceA B. abortus in vitro. Finally, we observed that, unlike the wt strain, the ΔaceA B. abortus strain multiplies similarly in wt and Acod1-/- C57BL/6 mice. These data suggest that bacterial isocitrate lyase might be a target of itaconate in AMs.


Asunto(s)
Brucelosis/inmunología , Carboxiliasas/inmunología , Enfermedades Pulmonares/inmunología , Macrófagos Alveolares/inmunología , Animales , Isocitratoliasa/metabolismo , Ratones , Ratones Endogámicos C57BL
20.
Biochimie ; 189: 13-25, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34090964

RESUMEN

Multiple sequence alignment of homoserine-acetyltransferases, serine-acetyltransferases and homoserine-succinyltransferases show they all belong to MetX family, having evolved from a common ancestor by conserving the catalytic site and substrate binding residues. The discrimination in the substrate selection arises due to the presence of substrate-specific residues lining the substrate-binding pocket. Mutation of Ala59 and Gly62 to Gly and Pro respectively in homoserine-acetyltransferase from M. tuberculosis resulted in a serine-acetyltransferase like enzyme as it acetylated both l-homoserine and l-serine. Homoserine-acetyltransferase from M. tuberculosis when mutated at positon 322 where Leu was converted to Arg, resulted in succinylation over acetylation of l-homoserine. Our studies establish the importance of the substrate binding residues in determining the type of activity possessed by MetX family, despite all of them having the same catalytic triad Ser-Asp-His. Hence key residues at the substrate binding pocket dictate whether the given enzyme shows predominant transferase or hydrolase activity.


Asunto(s)
Acetiltransferasas/química , Proteínas Bacterianas/química , Homoserina O-Succiniltransferasa/química , Mycobacterium tuberculosis/enzimología , Serina O-Acetiltransferasa/química , Acetiltransferasas/genética , Arginina/química , Arginina/genética , Proteínas Bacterianas/genética , Homoserina O-Succiniltransferasa/genética , Leucina/química , Leucina/genética , Mycobacterium tuberculosis/genética , Serina O-Acetiltransferasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...