Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
JBMR Plus ; 4(12): e10427, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33354646

RESUMEN

Pathologic fractures of the femur and tibia are common in youth with spina bifida (SB). These fractures may be associated with deficient bone accrual due to decreased ambulation and skeletal loading. This prospective cohort study used quantitative computed tomography (QCT) to assess three-dimensional (3D) bone properties in children and adolescents with SB. Eighty-three ambulatory youth with SB underwent QCT imaging of the tibia at up to four annual visits between ages 6 to 16 years (294 total visits averaging 3.5 visits/patient). A total of 177 controls without disability and 10 non-ambulatory youth with SB underwent imaging once. Bone geometric properties (cortical bone area, cross-sectional area, cortical thickness, cortical density, and moments of inertia) were measured at the mid-diaphysis (50% of bone length); cross-sectional area, cancellous density, and density-weighted area were measured in the proximal (13% of bone length) and distal (90% of bone length) metaphyses. Bone properties were compared between the ambulatory SB and control participants, among SB neurosegmental subgroups (sacral, low lumbar, mid lumbar and above) as a function of pubertal stage (prepubertal, pubertal, postpubertal), and considering SB type (myelomeningocele, lipomyelomeningocele) using linear mixed effects models adjusted for sex, age, height percentile, and body mass index (BMI) percentile. Only cancellous density of both metaphyses and weighted area of the proximal metaphysis differed between ambulatory children with SB and controls before puberty. However, significant deficits in all bone properties manifested during and after puberty as moderate bone growth in the SB group failed to keep pace with the large increases normally observed during puberty. The bone deficits primarily affected patients with myelomeningocele, and similar deficits were observed at all neurosegmental levels except that cancellous density was closer to normal in the sacral group. Descriptive analysis of the 10 non-ambulatory youth with SB showed greater bone deficits than ambulatory children, particularly for cancellous density in the distal metaphysis. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

2.
J Bone Miner Res ; 32(11): 2257-2262, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28667786

RESUMEN

A small vertebral cross-sectional area (CSA) imparts a mechanical disadvantage that escalates the risk for vertebral fractures in elderly populations. We examined whether a small vertebral CSA is also associated with a greater degree of vertebral wedging in children. Measurements of vertebral CSA, lumbar lordosis (LL) or thoracic scoliosis angle, and vertebral wedging were obtained in 100 healthy adolescents (50 boys and 50 girls) and 25 girls with adolescent idiopathic scoliosis (AIS) using magnetic resonance imaging. Vertebral CSA of the lumbar vertebrae negatively correlated to the degree of posteroanterior vertebral wedging at L5 (r = -0.49; p < 0.0001); this was true whether all subjects were analyzed together or boys and girls independently. In contrast, we found a positive correlation between the degree of LL and vertebral wedging (r = 0.57; p < 0.0001). Multiple regression analysis showed that the association between vertebral CSA and wedging was independent of age and body mass index. In girls with AIS, vertebral CSA negatively correlated to the degree of lateral thoracic vertebral wedging (r = -0.66; p = 0.0004), an association that persisted even after accounting for age and body mass index. Additionally, Cobb angle positively correlated to lateral thoracic vertebral wedging (r = 0.46; p = 0.021). Our cross-sectional results support the hypothesis that smaller vertebral CSA is associated with greater vertebral deformity during growth, as in adulthood. © 2017 American Society for Bone and Mineral Research.


Asunto(s)
Columna Vertebral/patología , Adolescente , Niño , Estudios Transversales , Femenino , Humanos , Modelos Lineales , Lordosis/patología , Vértebras Lumbares/patología , Imagen por Resonancia Magnética , Masculino , Escoliosis
3.
J Bone Miner Res ; 24(8): 1398-403, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19257831

RESUMEN

Because DXA is a projection technique, anterior-posterior (AP) measurements of the spine include the posterior elements and the vertebral body. This may be a disadvantage because the posterior elements likely contribute little to vertebral fracture resistance. This study used QCT to quantify the impact of the posterior elements in DXA AP spine measures. We examined 574 subjects (294 females and 280 males), age 6-25 yr, with DXA and QCT. QCT measures were calculated for the cancellous bone region and for the vertebral body including and excluding the posterior elements. DXA data were analyzed for the entire L(3) vertebra and for a 10-mm slice corresponding to the QCT scan region. BMC and BMD were determined and compared using Pearson's correlation. The posterior elements accounted for 51.4 +/- 4.2% of the total BMC, with a significant difference between males (49.9 +/- 4.0%) and females (52.8 +/- 3.9%, p < 0.001). This percentage increased with age in younger subjects of both sexes (p < 0.001) but was relatively consistent after age 17 for males and 16 for females (p > 0.10). DXA areal BMD and QCT volumetric BMD correlated strongly for the whole vertebra including the posterior elements (R = 0.83), with BMC measures showing a stronger relationship (R = 0.93). Relationships were weaker when excluding the posterior elements. We conclude that DXA BMC provides a measure of bone that is most consistent with QCT and that the contribution of the posterior elements is consistent in young subjects after sexual maturity.


Asunto(s)
Columna Vertebral/diagnóstico por imagen , Absorciometría de Fotón , Adolescente , Adulto , Densidad Ósea , Niño , Femenino , Humanos , Vértebras Lumbares , Masculino , Tomografía Computarizada por Rayos X , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA