Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Microbiol Spectr ; 10(5): e0077022, 2022 10 26.
Article En | MEDLINE | ID: mdl-35980272

Unconventional oil and gas (UOG) extraction is increasing exponentially around the world, as new technological advances have provided cost-effective methods to extract hard-to-reach hydrocarbons. While UOG has increased the energy output of some countries, past research indicates potential impacts in nearby stream ecosystems as measured by geochemical and microbial markers. Here, we utilized a robust data set that combines 16S rRNA gene amplicon sequencing (DNA), metatranscriptomics (RNA), geochemistry, and trace element analyses to establish the impact of UOG activity in 21 sites in northern Pennsylvania. These data were also used to design predictive machine learning models to determine the UOG impact on streams. We identified multiple biomarkers of UOG activity and contributors of antimicrobial resistance within the order Burkholderiales. Furthermore, we identified expressed antimicrobial resistance genes, land coverage, geochemistry, and specific microbes as strong predictors of UOG status. Of the predictive models constructed (n = 30), 15 had accuracies higher than expected by chance and area under the curve values above 0.70. The supervised random forest models with the highest accuracy were constructed with 16S rRNA gene profiles, metatranscriptomics active microbial composition, metatranscriptomics active antimicrobial resistance genes, land coverage, and geochemistry (n = 23). The models identified the most important features within those data sets for classifying UOG status. These findings identified specific shifts in gene presence and expression, as well as geochemical measures, that can be used to build robust models to identify impacts of UOG development. IMPORTANCE The environmental implications of unconventional oil and gas extraction are only recently starting to be systematically recorded. Our research shows the utility of microbial communities paired with geochemical markers to build strong predictive random forest models of unconventional oil and gas activity and the identification of key biomarkers. Microbial communities, their transcribed genes, and key biomarkers can be used as sentinels of environmental changes. Slight changes in microbial function and composition can be detected before chemical markers of contamination. Potential contamination, specifically from biocides, is especially concerning due to its potential to promote antibiotic resistance in the environment. Additionally, as microbial communities facilitate the bulk of nutrient cycling in the environment, small changes may have long-term repercussions. Supervised random forest models can be used to identify changes in those communities, greatly enhance our understanding of what such impacts entail, and inform environmental management decisions.


Disinfectants , Microbiota , Trace Elements , Rivers , Oil and Gas Fields , RNA, Ribosomal, 16S/genetics , Pennsylvania , Trace Elements/pharmacology , Microbiota/genetics , Disinfectants/pharmacology
2.
Chemosphere ; 284: 131255, 2021 Dec.
Article En | MEDLINE | ID: mdl-34214929

Our study goal was to investigate the impact of biocides and nanoparticles (NPs) on the microbial diversity in a hydraulic fracturing impacted stream. Biocides and NPs are known for their antimicrobial properties and controlling microbial growth. Previous work has shown that biocides can alter the microbial community composition of stream water and may select for biocide-resistant bacteria. Additional studies have shown that nanoparticles can also alter microbial community composition. However, previous work has often focused on the response to a single compound. Here we provide a more thorough analysis of the microbial community response to three different biocides and three different nanoparticles. A microcosm-based study was undertaken that exposed stream microbial communities to either biocides or NPs. Our results showed a decrease in bacterial abundance with different types of nanoparticles, but an increase in microbial abundance in biocide-amended treatments. The microbial community composition (MCC) was distinct from the controls in all biocide and NP treatments, which resulted in differentially enriched taxa in the treatments compared to the controls. Our results indicate that NPs slightly altered the MCC compared to the biocide-treated microcosms. After 14 days, the MCC in the nanoparticle-treated conditions was similar to the MCC in the control. Conversely, the MCC in the biocide-treated microcosms was distinct from the controls at day 14 and distinct from all conditions at day 0. This finding may point to the use of NPs as an alternative to biocides in some settings.


Disinfectants , Hydraulic Fracking , Microbiota , Nanoparticles , Disinfectants/toxicity , Nanoparticles/toxicity , Oxides/toxicity , Rivers
...