Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
iScience ; 27(3): 109270, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38487014

Glioblastoma stem cells (GSCs) reside in hypoxic periarteriolar niches of glioblastoma micro-environment, however, the crosstalk of GSCs with macrophages on regulating tumor angiogenesis and progression are not fully elucidated. GSCs-derived exosomes (GSCs-exos) are essential mediators during tumor immune-microenvironment remodeling initiated by GSCs, resulting in M2 polarization of tumor-associated macrophages (TAMs) as we reported previously. Our data disclosed aberrant upregulation of miR-374b-3p in both clinical glioblastoma specimens and human cell lines of GSCs. MiR-374b-3p level was high in GSCs-exos and can be internalized by macrophages. Mechanistically, GSCs exosomal miR-374b-3p induced M2 polarization of macrophages by downregulating phosphatase and tensin expression, thereby promoting migration and tube formation of vascular endothelial cells after coculture with M2 macrophages. Cumulatively, these data indicated that GSCs exosomal miR-374b-3p can enhance tumor angiogenesis by inducing M2 polarization of macrophages, as well as promote malignant progression of glioblastoma. Targeting exosomal miR-374b-3p may serve as a potential target against glioblastoma.

2.
Cell Death Discov ; 10(1): 71, 2024 Feb 10.
Article En | MEDLINE | ID: mdl-38341418

Abnormal lipid metabolism is an essential hallmark of glioblastoma. Hormone sensitive lipase (HSL), an important rate-limiting enzyme contributed to lipolysis, which was involved in aberrant lipolysis of glioblastoma, however, its definite roles and the relevant regulatory pathway have not been fully elucidated. Our investigations disclosed high expression of HSL in glioblastoma. Knock-down of HSL restrained proliferation, migration, and invasion of glioblastoma cells while adding to FAs could significantly rescue the inhibitory effect of si-HSL on tumor cells. Overexpression of HSL further promoted tumor cell proliferation and invasion. Bioinformatics analysis and dual-luciferase reporter assay were performed to predict and verify the regulatory role of ncRNAs on HSL. Mechanistically, hsa_circ_0021205 regulated HSL expression by sponging miR-195-5p, which further promoted lipolysis and drove the malignant progression of glioblastoma. Besides, hsa_circ_0021205/miR-195-5p/HSL axis activated the epithelial-mesenchymal transition (EMT) signaling pathway. These findings suggested that hsa_circ_0021205 promoted tumorigenesis of glioblastoma through regulation of HSL, and targeting hsa_circ_0021205/miR-195-5p/HSL axis can serve as a promising new strategy against glioblastoma.

3.
Micromachines (Basel) ; 15(2)2024 Feb 01.
Article En | MEDLINE | ID: mdl-38398963

MXene has emerged as a highly promising two-dimensional (2D) layered material with inherent advantages as an electrode material, such as a high electrical conductivity and spacious layer distances conducive to efficient ion transport. Despite these merits, the practical implementation faces challenges due to MXene's low theoretical capacitance and issues related to restacking. In order to overcome these limitations, we undertook a strategic approach by integrating Ti3C2Tx MXene with cobalt molybdate (CoMoO4) nanoparticles. The CoMoO4 nanoparticles bring to the table rich redox activity, high theoretical capacitance, and exceptional catalytic properties. Employing a facile hydrothermal method, we synthesized CoMoO4/Ti3C2Tx heterostructures, leveraging urea as a size-controlling agent for the CoMoO4 precursors. This innovative heterostructure design utilizes Ti3C2Tx MXene as a spacer, effectively mitigating excessive agglomeration, while CoMoO4 contributes its enhanced redox reaction capabilities. The resulting CoMoO4/Ti3C2Tx MXene hybrid material exhibited 698 F g-1 at a scan rate of 5 mV s-1, surpassing that of the individual pristine Ti3C2Tx MXene (1.7 F g-1) and CoMoO4 materials (501 F g-1). This integration presents a promising avenue for optimizing MXene-based electrode materials, addressing challenges and unlocking their full potential in various applications.

4.
CNS Neurosci Ther ; 30(2): e14599, 2024 02.
Article En | MEDLINE | ID: mdl-38332576

BACKGROUND: Glioblastoma is the most malignant primary brain tumor in adults. Temozolomide (TMZ) stands for the first-line chemotherapeutic agent against glioblastoma. Nevertheless, the therapeutic efficacy of TMZ appears to be remarkably limited, because of low cytotoxic efficiency against glioblastoma. Besides, various mechanical studies and the corresponding strategies fail to enhancing TMZ curative effect in clinical practice. Our previous studies have disclosed remodeling of glial cells by GSCs, but the roles of these transformed cells on promoting TMZ resistance have never been explored. METHODS: Exosomes were extracted from GSCs culture through standard centrifugation procedures, which can activate transformation of normal human astrocytes (NHAs) totumor-associated astrocytes (TAAs) for 3 days through detect the level of TGF-ß, CD44 and tenascin-C. The secretive protein level of ALKBH7 of TAAs was determined by ELISA kit. The protein level of APNG and ALKBH7 of GBM cells were determined by Western blot. Cell-based assays of ALKBH7 and APNG triggered drug resistance were performed through flow cytometric assay, Western blotting and colony formation assay respectively. A xenograft tumor model was applied to investigate the function of ALKBH7 in vivo. Finally, the effect of the ALKBH7/APNG signaling on TMZ resistance were evaluated by functional experiments. RESULTS: Exosomes derived from GSCs can activate transformation of normal human astrocytes (NHAs)to tumor-associated astrocytes (TAAs), as well as up-regulation of ALKBH7expression in TAAs. Besides, TAAs derived ALKBH7 can regulate APNG gene expression of GBM cells. After co-culturing with TAAs for 5 days, ALKBH7 and APNG expression in GBM cells were elevated. Furthermore, Knocking-down of APNG increased the inhibitory effect of TMZ on GBM cells survival. CONCLUSION: The present study illustrated a new mechanism of glioblastoma resistance to TMZ, which based on GSCs-exo educated TAAs delivering ALKBH7 to enhance APNG expression of GBM cells, which implied that targeting on ALKBH7/APNG regulation network may provide a new strategy of enhancing TMZ therapeutic effects against glioblastoma.


Brain Neoplasms , Exosomes , Glioblastoma , Adult , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/pathology , Astrocytes/metabolism , Exosomes/metabolism , Stem Cells/metabolism , Brain Neoplasms/genetics , Drug Resistance, Neoplasm , Cell Line, Tumor , Xenograft Model Antitumor Assays , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , AlkB Enzymes , Mitochondrial Proteins
5.
Glia ; 72(5): 857-871, 2024 May.
Article En | MEDLINE | ID: mdl-38234042

Tumor-associated astrocytes (TAAs) in the glioblastoma microenvironment play an important role in tumor development and malignant progression initiated by glioma stem cells (GSCs). In the current study, normal human astrocytes (NHAs) were cultured and continuously treated with GSC-derived exosomes (GSC-EXOs) induction to explore the mechanism by which GSCs affect astrocyte remodeling. This study revealed that GSC-EXOs can induce the transformation of NHAs into TAAs, with relatively swollen cell bodies and multiple extended processes. In addition, high proliferation, elevated resistance to temozolomide (TMZ), and increased expression of TAA-related markers (TGF-ß, CD44, and tenascin-C) were observed in the TAAs. Furthermore, GSC-derived exosomal miR-3065-5p could be delivered to NHAs, and miR-3065-5p levels increased significantly in TAAs, as verified by miRNA expression profile sequencing and Reverse transcription polymerase chain reaction. Overexpression of miR-3065-5p also enhanced NHA proliferation, elevated resistance to TMZ, and increased the expression levels of TAA-related markers. In addition, both GSC-EXO-induced and miR-3065-5p-overexpressing NHAs promoted tumorigenesis of GSCs in vivo. Discs Large Homolog 2 (DLG2, downregulated in glioblastoma) is a direct downstream target of miR-3065-5p in TAAs, and DLG2 overexpression could partially reverse the transformation of NHAs into TAAs. Collectively, these data demonstrate that GSC-EXOs induce the transformation of NHAs into TAAs via the miR-3065-5p/DLG2 signaling axis and that TAAs can further promote the tumorigenesis of GSCs. Thus, precisely blocking the interactions between astrocytes and GSCs via exosomes may be a novel strategy to inhibit glioblastoma development, but more in-depth mechanistic studies are still needed.


Exosomes , Glioblastoma , Glioma , MicroRNAs , Humans , Glioblastoma/pathology , Astrocytes/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Exosomes/metabolism , Glioma/pathology , Temozolomide/pharmacology , Temozolomide/metabolism , Neoplastic Stem Cells/metabolism , Carcinogenesis/genetics , Cell Proliferation , Tumor Microenvironment , Tumor Suppressor Proteins/metabolism , Guanylate Kinases/metabolism
6.
J Cancer ; 14(18): 3508-3520, 2023.
Article En | MEDLINE | ID: mdl-38021156

Glioma is a common type of tumor in the central nervous system, and the mortality is high. The prognosis of advanced glioma patients remains poor, and the therapeutic strategies need to be developed. The roles of circRNAs in glioma remain largely unknown. The aim of this study was to explore the functions circRNA_103239 in the biological behaviour changes of glioma cells. The expression of circRNA_103239 in clinical samples and glioma cells were examined using RT-qPCR. The targets of circRNA_103239 were predicted using bioinformatics approach. Gain- and loss-of-function study were carried out. The proliferation of transfected cells were evaluated by CCK-8 assay. Migratory and invasive activities of the cells were examined using wound healing, colony formation and transwell assay. Tumor growth was also evaluated in vivo. The results indicated that the expression of circRNA_103239 was predominantly detected in the cytoplasma of glioma cells. In addition, the expression of circRNA_103239 was down-regulated in glioma, and up-regulated circRNA_103239 inhibited the progression of glioma. Furthermore, miR-182-5p was the novel target of circRNA_103239 in glioma, and MTSS1 was the putative downstream molecule of circRNA_103239/miR-182-5p axis. Additionally, circRNA_103239 suppressed the progression of glioma in a miR-182-5p/MTSS1 dependent manner. Moreover, circRNA_103239 inhibited tumour growth in vivo, and the expression of circRNA_103239 was regulated by METTL14-mediated m6A modification. In summary, in normal cells, METTL14 mediated the m6A modification and expression of circRNA_103239, which sponging miR-182-5p and inducing the expression of MTSS1, subsequently inhibiting the EMT; whereas in glioma cells, downregulated METTL14 induced downregulated m6A modification and expression of circRNA_103239, further resulting in the up-regulation of miR-182-5p and down-regulation of MTSS1, consequently promoting the EMT of glioma cells and triggering the progression of tumor.

7.
CNS Neurosci Ther ; 29(12): 3756-3773, 2023 12.
Article En | MEDLINE | ID: mdl-37309294

AIM: Exosomal miRNAs derived from glioblastoma stem cells (GSCs) are important mediators of immunosuppressive microenvironment formation in glioblastoma multiform (GBM), especially in M2-like polarization of tumor-associated macrophages (TAMs). However, the exact mechanisms by which GSCs-derived exosomes (GSCs-exo) facilitate the remodeling of the immunosuppressive microenvironment of GBM have not been elucidated. METHODS: Transmission electron microscopy (TME) and nanoparticle tracking analysis (NTA) were applied to verify the existence of GSCs-derived exosomes. Sphere formation assays, flow cytometry, and tumor xenograft transplantation assays were performed to identify the exact roles of exosomal miR-6733-5p. Then, the mechanisms of miR-6733-5p and its downstream target gene regulating crosstalk between GSCs cells and M2 macrophages were further investigated. RESULTS: GSCs-derived exosomal miR-6733-5p induce macrophage M2 polarization of TAMs by positively targeting IGF2BP3 to activate the AKT signaling pathway, which further facilitates the self-renewal and stemness of GSCs. CONCLUSION: GSCs secrete miR-6733-5p-rich exosomes to induce M2-like polarization of macrophages, as well as enhance GSCs stemness and promote malignant behaviors of GBM through IGF2BP3 activated AKT pathway. Targeting GSCs exosomal miR-6733-5p may provide a potential new strategy against GBM.


Glioblastoma , MicroRNAs , Humans , Glioblastoma/pathology , Proto-Oncogene Proteins c-akt/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Macrophages/pathology , Stem Cells/metabolism , Cell Line, Tumor , Tumor Microenvironment
8.
CNS Neurosci Ther ; 29(4): 988-999, 2023 04.
Article En | MEDLINE | ID: mdl-36377508

BACKGROUND: Glioma is the most common malignant tumor of the central nervous system, with high heterogeneity, strong invasiveness, high therapeutic resistance, and poor prognosis, comprehending a serious challenge in neuro-oncology. Until now, the mechanisms underlying glioma progression have not been fully elucidated. METHODS: The expression of DExH-box helicase 9 (DHX9) in tissues and cells was detected by qRT-PCR and western blot. EdU and transwell assays were conducted to assess the effect of DHX9 on proliferation, migration and invasion of glioma cells. Cocultured model was used to evaluate the role of DHX9 on macrophages recruitment and polarization. Animal study was performed to explore the role of DHX9 on macrophages recruitment and polarization in vivo. Bioinformatics analysis, dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP)-qPCR assay was used to explore the relation between DHX9 and TCF12/CSF1. RESULTS: DHX9 was elevated in gliomas, especially in glioblastoma multiforme (GBM). Besides promoting the proliferation, migration, and invasion of glioma cells, DHX9 facilitated the infiltration of macrophages into glioma tissues and polarization to M2-like macrophages, known as tumor-associated macrophages (TAMs). DHX9 silencing decreased the expression of colony-stimulating factor 1 (CSF1), which partially restored the inhibitory effect on malignant progress of glioma and infiltration of TAMs caused by DHX9 knockdown by targeting the transcription factor 12 (TCF12). Moreover, TCF12 could directly bind to the promoter region of CSF1. CONCLUSION: DHX9/TCF12/CSF1 axis regulated the increases in the infiltration of TAMs to promote glioma progression and might be a novel potential target for future immune therapies against gliomas.


Glioma , Tumor-Associated Macrophages , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Cell Proliferation/physiology , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/immunology , Glioblastoma/pathology , Glioma/genetics , Glioma/immunology , Glioma/pathology , Macrophages/immunology , Macrophages/pathology , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/pathology , Humans
9.
Front Psychol ; 12: 693222, 2021.
Article En | MEDLINE | ID: mdl-34795609

Background: Loneliness adversely affects physical and mental health; therefore, it is necessary to explore its related influencing factors and mechanisms. This study investigated the mediating role of general self-concept in the association between parental punishment (PP) and adolescent loneliness and as well as the moderating role of teacher-student relationships (TSR) in Chinese students. Methods: Data were obtained from 1,169 Chinese students (10-18years old) using several self-report questionnaires: the Egna Minnen av Barndoms Uppfostran (EMBU), Self-Description Questionnaire (SDQ), Teacher-Student Relationships Scale (TSR), and UCLA Loneliness Scale. Data were analyzed with IBM SPSS 22.0, and the PROCESS macro program. Results: (1) Parental punishment had a positive predictive effect on adolescent loneliness, (2) parental punishment predicted adolescent loneliness not only directly but also indirectly through the mediating effect of general self-concept, and (3) teacher-student relationships moderated the influence of PP on adolescent loneliness. Conclusion: Adolescent loneliness is less affected by parental punishment when TSRs are better. Additionally, when adolescents are punished less by their parents and have good teacher-student relationships, they have higher general self-concepts. Limitations: This study's cross-sectional research design was unable to show causal relationships among the factors influencing adolescent loneliness.

10.
Sci Total Environ ; 778: 146407, 2021 Jul 15.
Article En | MEDLINE | ID: mdl-34030390

Epoxiconazole (EPX), as a broad-spectrum triazole fungicide, is widely used in agriculture to resist pests and diseases, while it may have potential toxicity to non-target organisms. In the present study, early developmental stage zebrafish were used as the subject organisms to assess the toxicity of EPX, and the possible mechanism of toxicity was also discussed by biochemical and transcriptomic analysis. Through embryo toxicity test, we had made it clear that the 96 h LC50 of embryo was 7.204 mg/L, and acute exposure to EPX effected hatching rate, heartbeats, body length and even morphological defects. Then, by being exposed to EPX for 7 days at concentrations of 175 (1/40 LC50), 350 (1/20 LC50) and 700 (1/10 LC50), biochemical parameters were affected, mainly manifested as increase of the triglyceride (TG) level and decrease of glucose content. Correspondingly, the transcription of genes related of glucose metabolism, lipid metabolism and cholesterol metabolism were also affected significantly in larval zebrafish. Moreover, some pathways, including lipid metabolism, glucose metabolism and amino acid metabolism were affected through transcriptome sequencing analysis in the larval zebrafish. Further data analysis based on the sequencing, EPX exposure also affected the expression of genes related to cell apoptosis. We further conformed that the bright fluorescence on the liver and bright spots near the liver by acridine orange staining. In addition, the mRNA levels of apoptosis related genes were also significantly affected in the EPX exposed larval zebrafish. Taken together, the work could provide an insight into toxic effects of EPX on the zebrafish larvae at embryo toxicity and transcriptional levels, providing some evidences for the toxic effects of triazole fungicides on non-target organisms.


Fungicides, Industrial , Zebrafish , Animals , Embryo, Nonmammalian , Epoxy Compounds/toxicity , Fungicides, Industrial/toxicity , Larva , Triazoles/toxicity
11.
Article En | MEDLINE | ID: mdl-34004283

As a broad-spectrum with low toxicity, procymidone (PCM), is widely used in agriculture and frequently observed in aquatic system, which may cause some impacts on aquatic organisms. Here, to determine the developmental toxicity of PCM, embryonic and larval zebrafish were exposed to PCM at 0, 1, 10, 100 µg/L in dehydrogenated natural water containing 0.01% acetone for 7 days. The results showed that high concentration of PCM could cause the pericardial edema and increase the heart rates in larval zebrafish, suggesting that PCM had developmental toxicity to zebrafish. We also observed that PCM exposure not only changed the physiological parameters including TBA, GLU and pyruvic acid, but also changed the transcriptional levels of glycolipid metabolism related genes. In addition, after transcriptomics analysis, a total of 1065 differentially expressed genes, including 456 up-regulated genes and 609 down-regulated genes, changed significantly in 100 µg/L PCM treated larval zebrafish. Interestingly, after GO (Gene Ontology) analysis, the different expression genes (DEGs) were mainly enriched to the three different biology processes including GABA-nervous, lipid Metabolism and response to drug. We also observed that the levels of GABA receptor related genes including gabrg2, gabbr1α, gabbr1 and gabra6α were inhibited by PCM exposure. Interestingly, the swimming distance of larval zebrafish had the tendency to decrease after PCM exposure, indicating that the nervous system was affected by PCM. Taken together, the results confirmed that the fungicide PCM could cause developmental toxicity by influencing the lipid metabolism and GABA mediated nervous system and behavior in larval zebrafish. We believed that the results could provide an important data for the influence of PCM on aquatic animals.


Bridged Bicyclo Compounds/toxicity , Fungicides, Industrial/toxicity , Gene Expression Regulation, Developmental/drug effects , Transcriptome/drug effects , Water Pollutants, Chemical/toxicity , Animals , Bridged Bicyclo Compounds/administration & dosage , Central Nervous System/drug effects , Central Nervous System/growth & development , Dose-Response Relationship, Drug , Larva/drug effects , Toxicity Tests , Zebrafish
12.
Sci Total Environ ; 739: 140081, 2020 Oct 15.
Article En | MEDLINE | ID: mdl-32554111

Carbendazim (CBZ) as a broad spectrum fungicide is widely used in the whole world to contorl plant diseases. With the application of CBZ in the agriculture, it has been detected in vegetables and fruits. Nowadays, it even has been detected in the watercourse and indoor dust. However, the toxic effects of CBZ on aquatic organisms have received limited attention. In this study, male adult zebrafish were exposed at 0, 30 and 100 µg/L CBZ for 21 days to assess its effects on hepatic glycolipid metabolism. After exposure, the body weight and length decreased, but the condition factor increased significantly. Some hepatic biochemical parameters including the levels of glucose, pyruvate, low density lipoprotein (LDL) and triglyceride (TG) decreased significantly in the liver of zebrafish after exposure with CBZ. Two transaminases alanine transaminase (ALT) and aspartate transaminase (AST) also increased significantly, indicating that subchronic CBZ exposure influenced the liver function. Moreover, the relative mRNA levels of some key genes related to the glycolysis and lipid metabolism in the liver also changed significantly. Furthermore, the transcriptome analysis showed that the carbon metabolism, lipid metabolism and detoxification metabolism were also affected in the liver of CBZ exposed zebrafish. Interestingly, we also found the amounts of the Firmicutes, Bacteroidetes, Actinobacteria, α-Proteobacteria, γ-Proteobacteria and Verrucomicrobia at phylum level significantly decreased in the gut. Sequencing V3-V4 region of 16S rRNA also demonstrated gut microbiota composition changed significantly according to weighted UniFrac distance analysis. Consequently, subchronic CBZ exposure induced hepatic metabolic disorder accompanied by gut microbiota dysbiosis in adult male zebrafish.


Dysbiosis , Gastrointestinal Microbiome , Animals , Benzimidazoles , Carbamates , Glycolipids , Lipid Metabolism , Male , RNA, Ribosomal, 16S , Zebrafish
13.
Article En | MEDLINE | ID: mdl-31867286

Catabolic control protein (CcpA) is linked to complex carbohydrate utilization and virulence factor in many bacteria species, influences the transcription of target genes by many mechanisms. To characterize the activity and regulatory mechanisms of CcpA in Streptococcus sanguinis, here, we analyzed the transcriptome of Streptococcus sanguinis SK36 and its CcpA-null derivative (ΔCcpA) using RNA-seq. Compared to the regulon of CcpA in SK36 in the RegPrecise database, we found that only minority of differentially expressed genes (DEGs) contained putative catabolite response element (cre) in their regulatory regions, indicating that many genes could have been affected indirectly by the loss of CcpA and analyzing the sequence of the promoter region using prediction tools is not a desirable method to recognize potential target genes of global regulator CcpA. Gene ontology and pathway analysis of DEGs revealed that CcpA exerts an influence predominantly involved in carbon catabolite metabolism and some amino acid catabolite pathways, which has been linked to expression of virulence genes in many pathogens and coordinately regulate the disease progression in vivo studies. However, in some scenarios, differences observed at the transcript level could not reflect the real differences at the protein level. Therefore, to confirm the differences in phenotype and virulence of SK36 and ΔCcpA, we characterized the role of CcpA in the regulation of biofilm development, EPS production and the virulence of Streptococcus sanguinis. Results showed CcpA inactivation impaired biofilm and EPS formation, and CcpA also involved in virulence in rabbit infective endocarditis model. These findings will undoubtedly contribute to investigate the mechanistic links between the global regulator CcpA and the virulence of Streptococcus sanguinis, further broaden our understanding of the relationship between basic metabolic processes and virulence.

...