Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 284: 116877, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39142118

RESUMEN

Citrinin (CTN) is a mycotoxin commonly found in contaminated foods and feed, posing health risks to both humans and animals. However, the mechanism by which CTN damages the intestine remains unclear. In this study, a model of intestinal injury was induced by administering 1.25 mg/kg and 5 mg/kg of CTN via gavage for 28 consecutive days in 6-week-old Kunming mice, aiming to explore the potential mechanisms underlying intestinal injury. The results demonstrate that CTN can cause structural damage to the mouse jejunum. Additionally, CTN reduces the protein expression of Claudin-1, Occludin, ZO-1, and MUC2, thereby disrupting the physical and chemical barriers of the intestine. Furthermore, exposure to CTN alters the structure of the intestinal microbiota in mice, thus compromising the intestinal microbial barrier. Meanwhile, the results showed that CTN exposure could induce excessive apoptosis in intestinal cells by altering the expression of proteins such as CHOP and GRP78 in the endoplasmic reticulum and Bax and Cyt c in mitochondria. The mitochondria and endoplasmic reticulum are connected through the mitochondria-associated endoplasmic reticulum membrane (MAM), which regulates the membrane. We found that the expression of bridging proteins Fis1 and BAP31 on the membrane was increased after CTN treatment, which would exacerbate the endoplasmic reticulum dysfunction, and could activate proteins such as Caspase-8 and Bid, thus further inducing apoptosis via the mitochondrial pathway. Taken together, these results suggest that CTN exposure can cause intestinal damage by disrupting the intestinal barrier and inducing excessive apoptosis in intestinal cells.

2.
Ecotoxicol Environ Saf ; 284: 116946, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39208586

RESUMEN

Citrinin (CTN) has been reported to induce renal failure and structural damage, but its nephrotoxic effects and mechanisms are not fully understood. Therefore, we established a model by orally administering CTN (0, 1.25, 5, or 20 mg/kg) to mice for 21 consecutive days. Histological and biochemical analyses revealed that CTN caused structural damage to renal tubules, increased inflammatory cell infiltration, and elevated levels of serum markers of renal function (creatinine, urea, and uric acid). Moreover, mRNA transcript levels of the inflammatory factors TNF-α, IL-1ß, and IL-6 were increased, indicating the occurrence of an inflammatory response. Furthermore, exposure to CTN induced renal oxidative stress by decreasing antioxidant GSH levels, antioxidant enzyme (SOD, CAT) activities, and increasing oxidative products (ROS, MDA). In addition, CTN increased the expression of proteins associated with endoplasmic reticulum (ER)stress and apoptotic pathways. ER stress has been shown to be involved in regulating various models of kidney disease, but its role in CTN-induced renal injury has not been reported. We found that pretreatment with the ER stress inhibitor 4-PBA (240 mg/kg, ip) alleviated CTN-induced oxidative stress, NF-κB pathway mediated inflammatory response, and apoptosis. Interestingly, 4-PBA also partially alleviated renal structural damage and dysfunction. Thus, ER stress may be a novel target for the prevention and treatment of CTN-induced renal injury.

3.
Ecotoxicol Environ Saf ; 283: 116787, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39067079

RESUMEN

T-2 toxin, a mycotoxin found in foods and feeds, poses a threat to female reproductive health in both humans and animals. LncRNA CUFF.253988.1 (CUFF.253988.1), highly expressed in pigs, has an undisclosed regulatory role. This study aimed to establish a model of T-2 toxin-induced ovarian injury in sows, both in vivo and in vitro, and to explore the regulatory role and potential mechanisms of CUFF.253988.1. The results showed that feeding T-2 toxin-contaminated feed (1 mg/kg) induced ovarian follicle atresia and mitochondrial structural damage, accompanied by a significant upregulation of CUFF.253988.1 expression in the ovaries. Additionally, T-2 toxin inhibited the SIRT3/PGC1-α pathway associated with mitochondrial function. Moreover, T-2 toxin induced cell apoptosis by upregulating the expression of Cyt c, Bax, cleaved-caspase-9, and cleaved-caspase-3 proteins. In T-2 toxin-induced injury to the ovarian granulosa AVG-16 cells at concentrations of 10, 40 and 160 nM, not only were the previously mentioned effects observed, but also a decrease in mitochondrial membrane potential, ATP content, and an elevation in ROS levels. However, downregulating CUFF.253988.1 reversed T-2 toxin's inhibition of the SIRT3/PGC1-α pathway, alleviating mitochondrial dysfunction and reducing cell apoptosis. Notably, this may be attributed to the inhibition of T-2 toxin-induced enrichment of CUFF.253988.1 in mitochondria. In conclusion, CUFF.253988.1 plays a pivotal role in T-2 toxin-induced ovarian damage, operating through the inhibition of the SIRT3/PGC1-α pathway and promotion of cell apoptosis.


Asunto(s)
Apoptosis , Ovario , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , ARN Largo no Codificante , Sirtuina 3 , Toxina T-2 , Animales , Femenino , Apoptosis/efectos de los fármacos , Toxina T-2/toxicidad , Sirtuina 3/genética , Sirtuina 3/metabolismo , Porcinos , ARN Largo no Codificante/genética , Ovario/efectos de los fármacos , Ovario/patología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Células de la Granulosa/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
4.
Biomed Pharmacother ; 173: 116273, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38412715

RESUMEN

Osteoarthritis (OA) is a degenerative joint disease, Increasingly, mitochondrial autophagy has been found to play an important regulatory role in the prevention and treatment of osteoarthritis. Koumine is a bioactive alkaloid extracted from the plant Gelsemium elegans. In previous research, Koumine was found to have potential in improving the progression of OA in rats. However, the specific mechanism of its action has not been fully explained. Therefore, the aim of this study was to investigate whether Koumine can alleviate OA in rats by influencing mitochondrial autophagy. In the in vitro study, rat chondrocytes (RCCS-1) were induced with IL-1ß (10 ng/mL) to induce inflammation, and Koumine (50 µg/mL) was co-treated. In the in vivo study, a rat OA model was established by intra-articular injection of 2% papain, and Koumine was administered orally (1 mg/kg, once daily for two weeks). It was found that Koumine effectively reduced cartilage erosion in rats with osteoarthritis. Additionally, it decreased the levels of inflammatory factors such as IL-1ß, IL-6, and extracellular matrix (ECM) components MMP13 and ADAMTS5 in chondrocytes and articular cartilage tissue, while increasing the level of Collagen II.Koumine inhibited the production of reactive oxygen species (ROS) in cartilage tissue and increased the number of autophagosomes in chondrocytes and articular cartilage tissue. Additionally, it upregulated the expression of mitochondrial autophagy proteins LC3Ⅱ/Ⅰ, PINK1, Parkin, and Drp1. The administration of Mdivi-1 (50 µM) reversed the enhanced effect of Koumine on mitochondrial autophagy, as well as its anti-inflammatory and anti-ECM degradation effects in rats with OA. These findings suggest that Koumine can alleviate chondrocyte inflammation and improve the progression of OA in rats by activating PINK1/Parkin-mediated mitochondrial autophagy.


Asunto(s)
Cartílago Articular , Alcaloides Indólicos , Osteoartritis , Ratas , Animales , Condrocitos/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Ratas Sprague-Dawley , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Cartílago Articular/metabolismo , Autofagia , Interleucina-1beta/metabolismo , Matriz Extracelular/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Quinasas/metabolismo
5.
Int Immunopharmacol ; 129: 111653, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38354511

RESUMEN

T-2 toxin, an unavoidable contaminant in animal feeds, can induce oxidative stress and damage immune organs. Melatonin (MT), a natural and potent antioxidant, has shown promise as a detoxifier for various mycotoxins. However, the detoxifying effect of MT on T-2 toxin has not been previously reported. In order to investigate the protective effect of MT added to diets on the immune system of T-2 toxin-exposed piglets, twenty piglets weaned at 28d of age were randomly divided into control, T-2 toxin (1 mg/kg), MT (5 mg/kg), and T-2 toxin (1 mg/kg) + MT (5 mg/kg) groups(n = 5 per group). Our results demonstrated that MT mitigated T-2 toxin-induced histoarchitectural alterations in the spleen and thymus, such as hemorrhage, decreased white pulp size in the spleen, and medullary cell sparing in the thymus. Further research revealed that MT promoted the expression of Nrf2 and increased the activities of antioxidant enzymes CAT and SOD, while reducing the production of the lipid peroxidation product MDA. Moreover, MT inhibited the NF-κB signaling pathway, regulated the expression of downstream cytokines IL-1ß, IL-6, TNF-α, and TGF-ß1. MT also suppressed the activation of caspase-3 while down-regulating the ratio of Bax/Bcl-2 to reduce apoptosis. Additionally, MT ameliorated the T-2 toxin-induced disorders of immune cells and immune molecules in the blood. In conclusion, our findings suggest that MT may effectively protect the immune system of piglets against T-2 toxin-induced damage by inhibiting oxidative stress, inflammatory response, and apoptosis in the spleen and thymus. Therefore, MT holds the potential as an antidote for T-2 toxin poisoning.


Asunto(s)
Melatonina , Toxina T-2 , Animales , Porcinos , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Melatonina/farmacología , Melatonina/uso terapéutico , Melatonina/metabolismo , Bazo , Toxina T-2/toxicidad , Estrés Oxidativo , Apoptosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA