Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 52
1.
PLoS One ; 19(6): e0300765, 2024.
Article En | MEDLINE | ID: mdl-38843132

The transfer of land plays a crucial role in revitalizing land resources, acting as a catalyst for promoting the high-quality development of agriculture. The land transfer ratio is a crucial metric for assessing the progress of rural land transfer and the effective allocation of rural land resources. Thus, this study examines the rural land transfer ratio across 30 provinces in China from 2005 to 2020. The study explores the distribution characteristics of the ratio using the rank-size rule and trend surface analysis. The LISA space-time transition method is employed to analyze the spatial and temporal dynamics of the rural land transfer ratio and examine its convergence. The study aims to comprehensively analyze the spatial distribution characteristics and evolutionary patterns of rural land transfer in China, illustrating the convergence and influencing factors during the development process. The results indicate that: (1) The rural land transfer ratio in China is generally increasing, with a spatial pattern showing an upward trend from west to east and from north to south. The main spatial contrast is between the eastern and western regions, with a relatively minor distinction between the southern and northern regions. (2) The LISA space-time transition highlights a significant spatial locking effect in China's rural land transfer ratio, suggesting strong spatial integration in its evolution. (3) Clear indications of σ convergence, absolute ß convergence, and club convergence are evident in China's rural land transfer ratio. This suggests a gradual reduction in internal disparities among provinces and regions, where areas with higher land transfer ratios influence spatial spillover effects on adjacent lower areas. (4) Factors such as transportation infrastructure, irrigation, water conservancy construction, and farmers' per capita income collectively influence the spatial and temporal evolution of China's rural land transfer ratio, with dominant driving factors varying across different periods.


Agriculture , Spatio-Temporal Analysis , China , Conservation of Natural Resources/legislation & jurisprudence , Humans
2.
J Environ Manage ; 359: 121061, 2024 May.
Article En | MEDLINE | ID: mdl-38728983

China's commitment to attaining carbon neutrality by 2060 has galvanized research into carbon sequestration, a critical approach for mitigating climate change. Despite the rapid urbanization observed since the turn of the millennium, a comprehensive analysis of how urbanization influences urban carbon storage throughout China remains elusive. Our investigation delves into the nuanced effects of urbanization on carbon storage, dissecting both the direct and indirect influences by considering urban-suburban gradients and varying degrees of urban intensity. We particularly scrutinize the roles of climatic and anthropogenic factors in mediating the indirect effects of urbanization on carbon storage. Our findings reveal that urbanization in China has precipitated a direct reduction in carbon storage by approximately 13.89 Tg of carbon (Tg C). Remarkably, urban sprawl has led to a diminution of vegetation carbon storage by 8.65 Tg C and a decrease in soil carbon storage by 5.24 Tg C, the latter resulting from the sequestration of impervious surfaces and the elimination of organic matter inputs following vegetation removal. Meanwhile, carbon storage in urban greenspaces has exhibited an increase of 6.90 Tg C and offsetting 49.70% of the carbon loss induced by direct urbanization effects. However, the indirect effects of urbanization predominantly diminish carbon storage in urban greenspaces by an average of 5.40%. The degree of urban vegetation management emerges as a pivotal factor influencing the indirect effects of urbanization on carbon storage. To bolster urban carbon storage, curbing urban sprawl and augmenting urban green spaces are imperative strategies. Insights from this study are instrumental in steering sustainable urban planning and advancing towards the goal of carbon neutrality.


Carbon Sequestration , Carbon , Climate Change , Urbanization , China , Carbon/analysis , Soil/chemistry
3.
Micromachines (Basel) ; 14(12)2023 Nov 27.
Article En | MEDLINE | ID: mdl-38138331

In this work, high-frequency forced vibrations of lateral field excitation (LFE) devices with stepped electrodes based on monoclinic crystals GdCOB are modeled, and the influence laws of the device parameters (the step number, size, and thickness of the stepped electrodes) on the energy-trapping effects of the device are revealed. The results show that the step number has a significant effect on the energy-trapping effect of the device: with the increase in the step number, the stronger energy-trapping effect of the device can be obtained; with the increase in the thickness difference of two layers of electrodes, the energy-trapping effect of the device becomes stronger; with the increase in the difference of the electrode radius, the energy-trapping effect of the device is enhanced gradually. The results of this work can provide an important theoretical basis for the design of stepped-electrode LFE resonators and sensors with high-quality factors based on monoclinic crystals.

4.
J Clean Prod ; 402: 136696, 2023 May 20.
Article En | MEDLINE | ID: mdl-36942056

The COVID-19 outbreak has injured the global industrial supply chain, especially China as the world's largest manufacturing base. Since 2020, China has implemented a rigorous lockdown policy, which has sternly damaged sectoral trade in export-oriented coastal areas. Fujian Province, which mainly processes imported materials, has a more profound influence. Although the COVID-19 lockdown has had some detrimental consequences on the world economy, it also had some favorable benefits on the global ecology. Previous studies have shown that the lockdown has altered the physical water quantity and quality, but the lack of total, virtual, and physical water research that combines water quantity and water quality simultaneously to pinpoint the subject and responsibility of water resources consumption and pollution. This research quantified the physical, virtual, and total water consumption and water pollution among 30 sectors in Fujian Province based on the theory of water footprint and the Economic Input-Output Life Cycle Assessment model. SDA model was then used to investigate the socioeconomic elements that underpin variations in the water footprint. The results show that after the lockdown, the physical water quantity and the physical grey WF in Fujian Province decreased by 2.6 Gm3 (-6.7%) and 0.4 Gm3 (-1.3%) respectively. The virtual water quantity decreased by 2.3 Gm3 (-4.5%), whereas the virtual grey WF rose by 1.5 Gm3 (4.3%). The total water quantity dropped by 3.3 Gm3 (-4.9%), while the grey WF increased by 1.2 Gm3 (2.5%), i.e. the COVID-19 lockdown decreases physical water quantity and improves local water quality. More than 50% of the water comes from virtual water trade outside the province (virtual water is highly dependent on external), and around 60% of the grey WF comes from physical sewage in the province. The COVID-19 lockdown reduced water outsourcing across the province (paid nonlocally decrease) but increased pollution outsourcing (paid nonlocally increase). And gross capital formation's contribution to the growth in water footprint will continue to rise. As a result, this study suggested that Fujian should take advantage of sectoral trade network to enhance the transaction of green water-intensive intermediate products, reduce the physical water consumption of blue water-intensive sectors, and reduce the external dependence on water consumption. Achieving the shared responsibility of upstream and downstream water consumption and reducing the external dependence on water in water-rich regions is crucial to solving the world's water problems. This research provides empirical evidence for the long-term effects of COVID-19 lockdown on the physical and virtual water environment.

5.
Biophys J ; 122(11): 2068-2081, 2023 06 06.
Article En | MEDLINE | ID: mdl-36397672

Actin networks polymerize and depolymerize to construct highly organized structures, thereby endowing the mechanical phenotypes found in a cell. It is generally believed that the amount of filamentous actin and actin network architecture determine cytoplasmic viscoelasticity of the whole cell. However, the intrinsic complexity of a cell and the presence of endogenous cellular components make it difficult to study the differential roles of distinct actin networks in regulating cell mechanics. Here, we model a cell by using giant unilamellar vesicles (GUVs) encapsulating actin filaments and networks assembled by various actin cross-linker proteins. Perturbation of these cytoskeletal vesicles using alternating current electric fields revealed that deformability depends on actin network architecture. While actin-free vesicles exhibited large electromechanical deformations, deformations of GUVs encapsulating actin filaments were significantly dampened. The suppression of electrodeformation of actin-GUVs can be similarly recapitulated by using aqueous poly(ethylene glycol) 8000 solutions at different concentrations to modulate solution viscoelasticity. Furthermore, networks cross-linked by alpha actinin resulted in decreased GUV deformability compared with actin-filament-encapsulating GUVs, and membrane-associated actin networks, through the formation of the dendritic actin cortex, greatly dampened electrodeformation of GUVs. These results highlight that the organization of actin networks regulates the mechanics of GUVs and shed insights into the origin of differential deformability of cells.


Actins , Cytoskeleton , Actins/chemistry , Cytoskeleton/metabolism , Actin Cytoskeleton/metabolism , Unilamellar Liposomes/chemistry , Cytosol/metabolism
6.
Materials (Basel) ; 15(19)2022 Oct 08.
Article En | MEDLINE | ID: mdl-36234317

Three corrosion potentials and three corrosion current densities are clearly identified before the passivation for both dynamic polarization curves of equimolar CoCrFeNi high-entropy alloy (HEA) and 304 stainless steel (304SS) in 0.5 M H2SO4 aerated aqueous solution, by decomposing anodic and cathodic polarization curves. The passivated current density of the former is greater than the latter, compliant with not only the constant of solubility product (ksp) and redox equilibrium potential (Eeq) of each metal hydroxide but also the sequence of bond energy (Eb) for monolayer hydroxide on their facets derived from the first principle founded on density function theory. However, the total amount of ion releasing from HEA is less than 304SS, since the hydroxide/oxide film formed in the air of the latter containing greater amounts of Fe(Ⅱ) and Mn(Ⅱ) is less stable around corrosion potentials while they are further oxidized into more stable Fe(Ⅲ) and Mn(ⅢorⅣ) with much lower ksp, leading to the much less increasing ratios of ion releases from 0.25 to 0.6 V.

7.
Pharmacol Res Perspect ; 10(4): e00992, 2022 08.
Article En | MEDLINE | ID: mdl-35880674

Cardiac ischemia, hypoxia, arrhythmias, and heart failure share the common electrophysiological changes featured by the elevation of intracellular Ca2+ (Ca2+ overload) and inhibition of the inward rectifier potassium (IK1 ) channel. IK1 channel agonists have been considered a new type of anti-arrhythmia and cardioprotective agents. We predicted using a drug repurposing strategy that tetramisole (Tet), a known anthelminthic agent, was a new IK1 channel agonist. The present study aimed to experimentally identify the above prediction and further demonstrate that Tet has cardioprotective effects. Results of the whole-cell patch clamp technique showed that Tet at 1-100 µmol/L enhanced IK1 current, hyperpolarized resting potential (RP), and shortened action potential duration (APD) in isolated rat cardiomyocytes, while without effects on other ion channels or transporters. In adult Sprague-Dawley (SD) rats in vivo, Tet showed anti-arrhythmia and anticardiac remodeling effects, respectively, in the coronary ligation-induced myocardial infarction model and isoproterenol (Iso, i.p., 3 mg/kg/day, 10 days) infusion-induced cardiac remodeling model. Tet also showed anticardiomyocyte remodeling effect in Iso (1 µmol/L) infused adult rat ventricular myocytes or cultured H9c2 (2-1) cardiomyocytes. Tet at 0.54 mg/kg in vivo or 30 µmol/L in vitro showed promising protections on acute ischemic arrhythmias, myocardial hypertrophy, and fibrosis. Molecular docking was performed and identified the selective binding of Tet with Kir2.1. The cardioprotection of Tet was associated with the facilitation of IK1 channel forward trafficking, deactivation of PKA signaling, and inhibition of intracellular calcium overload. Enhancing IK1 may play dual roles in anti-arrhythmia and antiventricular remodeling mediated by restoration of Ca2+ homeostasis.


Potassium Channels, Inwardly Rectifying , Tetramisole , Animals , Anti-Arrhythmia Agents/pharmacology , Arrhythmias, Cardiac/drug therapy , Molecular Docking Simulation , Myocytes, Cardiac , Potassium Channels, Inwardly Rectifying/metabolism , Rats , Rats, Sprague-Dawley , Tetramisole/metabolism , Tetramisole/pharmacology
8.
Phys Chem Chem Phys ; 24(24): 14975-14984, 2022 Jun 22.
Article En | MEDLINE | ID: mdl-35686993

Rotational spectra of 2,2,3,3,3-pentafluoro-1-propanol (PFP) were measured using cavity and chirped pulse Fourier transform microwave spectrometers. Of the nine possible PFP configurations which include four mirror-imaged pairs and an achiral conformer, the two most stable monomeric PFP imaged pairs, i.e., PFPG+g+/G-g- and PFPTg+/Tg- were observed and assigned, along with the 13C, 18O and deuterated isotopologues of PFPG+g+/G-g-. The rotational transitions of PFPTg+/Tg- exhibit large tunnelling splittings and were analyzed in detail. CREST, a recently developed conformational search tool that was used for systematic conformational searches of possible binary PFP conformers and the subsequent DFT calculations at the B3LYP-D3(BJ)/def2-QZVP level produced nearly 80 stable, binary PFP geometries, where ten of them are within a narrow energy window of ∼1 kJ mol-1, highlighting the structural diversity of the system. Rotational spectra of five (PFP)2 conformers were assigned and were identified as the five most stable binary conformers predicted. A closer examination reveals that the assigned binary conformers are made exclusively of the two most stable PFP monomeric subunits observed experimentally. A combined kinetic and thermodynamic model was proposed to explain the observation or non-observation of low energy conformers, and the analysis was further verified by the 'argon test'. The non-covalent intermolecular interactions of PFP and its binary conformers are also discussed with the aid of quantum theory of atoms in molecules (QTAIM) and non-covalent interaction (NCI) analyses, as well as the effects of fluorination by comparing with 1-propanol and its dimers.

9.
Chemphyschem ; 23(20): e202200348, 2022 10 19.
Article En | MEDLINE | ID: mdl-35759723

The 2,2,3,3,3-pentafluoropropanol (PFP) monomer can exist in five conformations defined by the CCCO and CCOH dihedral angles: four mirror-imaged pairs (G+g+/G-g-, G+g-/G-g+, G+t/G-t, Tg+/Tg-) and an achiral Tt form. We examined the conformational landscape of the PFP⋅⋅⋅water complex using chirped pulsed Fourier transform microwave spectroscopy and theoretical calculations. Rotational spectra of two PFP⋅⋅⋅water conformers, PFPG+g+⋅⋅⋅WH and PFPTg+⋅⋅⋅WH , and seven deuterated isotopologues of each, were assigned. Tunneling splittings were observed for both conformers and are attributed to the exchange of the bonded and non-bonded hydrogen atoms of water. On the other hand, the tunneling splitting associated with the OH flipping motion in PFPTg+/Tg- appears to be quenched upon hydrogen bonding with water. The large amplitude motions associated with the water subunits were examined in detail to explain the very different magnitudes of the experimental and theoretical permanent electric dipole moment components. The study highlights the challenge in correctly identifying the conformers observed when large amplitude motions are involved. Quantum theory of atoms in molecules (QTAIM) and non-covalent interaction (NCI) analyses, as well as electrostatic potential (ESP) calculations were carried out to explore the nature of the non-covalent interactions and to appreciate the effects of fluorination.


Hydrogen , Water , Water/chemistry , Molecular Conformation , Spectrum Analysis , Rotation
10.
Front Cell Dev Biol ; 10: 840513, 2022.
Article En | MEDLINE | ID: mdl-35359442

Liaoyu white cattle (LYWC) is a local breed in Liaoning Province, China. It has the advantages of grow quickly, high slaughter ratew, high meat quality and strong anti-stress ability. N6 methyladenosine (m6A) is a methylation modification of N6 position of RNA adenine, which is an important modification mechanism affecting physiological phenomena. In this study, we used the longissimus dorsi muscle of LYWC and SIMC for m6A-seq and RNA-seq high-throughput sequencing, and identified the key genes involved in muscle growth and m6A modification development by bioinformatics analysis. There were 31532 m6A peaks in the whole genome of LYWC and 47217 m6A peaks in the whole genome of SIMC. Compared with Simmental cattle group, LYWC group had 17,351 differentially expressed genes: 10,697 genes were up-regulated, 6,654 genes were down regulated, 620 differentially expressed genes were significant, while 16,731 differentially expressed genes were not significant. Among the 620 significantly differentially expressed genes, 295 genes were up-regulated and 325 genes were down regulated. In order to explore the relationship between m6A and mRNA expression in the muscles of LYWC and SIMC, the combined analysis of MeRIP-seq and RNA-seq revealed that 316 genes were m6A modified with mRNA expression. To identify differentially methylated genes related to muscle growth, four related genes were selected for quantitative verification in LYWC and SIMC. GO enrichment and KEGG analysis showed that the differentially expressed genes modified by m6A are mainly involved in skeletal muscle contraction, steroid biosynthesis process, redox process, PPAR pathway and fatty acid metabolism, and galactose metabolism. These results provide a theoretical basis for further research on the role of m6A in muscle growth and development.

11.
Int Heart J ; 62(6): 1348-1357, 2021.
Article En | MEDLINE | ID: mdl-34853227

Inward rectifier potassium channels (IK1, Kir) are known to play critical roles in arrhythmogenesis. Thus, how IK1 agonist affects reperfusion arrhythmias needs to be clarified, and its underlying mechanisms should be determined. Reperfusion arrhythmias were modeled by coronary ligation (ischemia, 15 minutes) and release (reperfusion, 15 minutes). Zacopride (1.5-50 µg/kg in vivo, or 0.1-10 µmol/Lex vivo) was applied in the settings of pretreatment (3 minutes before coronary ligation) and posttreatment (5 minutes after coronary ligation). Hypoxia (45 minutes) /reoxygenation (30 minutes) model was established in cultured H9c2 (2-1) cardiomyocytes. Zacopride or KN93 was applied before hypoxia (pretreatment). In the setting of pre- or posttreatment, zacopride at 15 µg/kg in vivo or 1 µmol/Lin vitro exhibited superlative protections on reperfusion arrhythmias or intracellular calcium overload. Western blot data from ex vivo hearts or H9c2 (2-1) cardiomyocytes showed that I/R (H/R) induced the inhibition of Kir2.1 (the dominant subunit of IK1 channel in ventricle), phosphorylation and oxidation of CaMKII, downregulation of SERCA2, phosphorylation of phospholamban (at Thr17), and activation of caspase-3. Zacopride treatment (1 µmol/L) was noted to strikingly restore the expression of Kir2.1 and SERCA2 and decrease the activity of CaMKII, phospholamban, and caspase-3. These effects were largely eliminated by co-application of IK1 blocker BaCl2. CaMKII inhibitor KN93 attenuated calcium overload and p-PLB (Thr17) in an IK1-independent manner. IK1-depedent inhibition of CaMKII activity is found to be a key cardiac salvage signaling under Ca2+ dyshomeostasis and reactive oxygen species (ROS) stress. IK1 might be a novel target for pharmacological conditioning of reperfusion arrhythmia, especially for the application after unpredictable ischemia.


Arrhythmias, Cardiac/drug therapy , Benzamides/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Myocardial Reperfusion Injury/complications , Potassium Channels, Inwardly Rectifying/agonists , Animals , Benzylamines/pharmacology , Calcium/metabolism , Disease Models, Animal , Protein Kinase Inhibitors/pharmacology , Rats, Sprague-Dawley , Signal Transduction , Sulfonamides/pharmacology
12.
J Phys Chem A ; 125(48): 10401-10409, 2021 Dec 09.
Article En | MEDLINE | ID: mdl-34846154

Rotational spectra of the 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP)···water complex were measured using a chirped pulse Fourier-transform microwave spectrometer. The spectral analyses, aided by density functional theory calculations, reveal two HFIP···water isomers: one previously reported, trans HFIP (HFIPt)···water (Phys. Chem. Chem. Phys. 2015, 119, 5650-5657), and a new isomer, gauche HFIP (HFIPg)···water. To confirm the identity of the new isomer, rotational spectra of seven of its deuterated species were also measured and analyzed. Both the experimental and theoretical pieces of evidence indicate that the intermolecular interaction with water preferentially stabilizes the HFIPg monomer configuration over the global minimum configuration, HFIPt. The relative energy difference between these monomeric forms is 4.1 kJ mol-1 and decreases to 2.5 kJ mol-1 in the respective monohydrates at the B3LYP-D3(BJ)/def2-QZVP level of theory. Both rigid and relaxed potential energy surface scans were carried out to gain insights into the large-amplitude water motions in HFIPg···water. The nonobservation of a water tunneling splitting in HFIPt···water has been explained to be a result of a barrier-less (after zero-point-energy correction) pathway for the water motion, whereas in HFIPg···water, a relatively large water tunneling barrier was identified as the cause of barely resolved water tunneling splittings. Noncovalent interaction and quantum theory of atoms and molecule analyses were used to evaluate the changes in HFIPg···water when going from the minimum to the transition state in terms of attractive interactions such as the OH···H and OH···F contacts. The effect of fluorination is discussed by comparing the vastly different binding topologies of isopropanol···water and HFIP···water.

13.
Am J Transl Res ; 13(8): 8683-8696, 2021.
Article En | MEDLINE | ID: mdl-34539987

Downregulation of inward rectifier potassium (IK1) channel is a hallmark in cardiac hypertrophy and failure. The cardioprotection of zacopride (a selective IK1 agonist) and underlying mechanisms were investigated in L-thyroxine (T4) or Triiodothyronine (T3)-induced cardiac remodeling. In the in vivo study, adult male Sprague-Dawley (SD) rats were randomly divided into control, L-thyroxine, L-thy+zacopride, and L-thy+zacopride+chloroquine (an IK1 antagonist) groups. Echocardiography, histopathology, TUNEL assay, western blotting and confocal imaging for intracellular Ca2+ fluorescence were performed. In the in vitro study, zacopride and nifedipine (a LTCC blocker) were used to compare their effects on Kir2.1, SAP97, autophagy, and [Ca2+]i in H9C2 (2-1) cardiomyocytes. Zacopride treatment attenuated L-thyroxine- or T3 induced cardiac remodeling and dysfunction which manifested as cardiac hypertrophy and collagen deposition, dilated ventricle, decreased ejection fraction (EF), increased cardiomyocytes apoptosis, hyper-activation of CaMKII and PI3K/Akt/mTOR signaling, decreased cardiac autophagy, and increased expression of integrin ß3. The cardioprotection of zacopride is strongly associated with the upregulation of IK1, SAP97, and [Ca2+]i homeostasis in cardiomyocytes. IK1 antagonist chloroquine or BaCl2 reversed these effects. Nifedipine could attenuate intracellular Ca2+ overload with no significant effects on IK1, SAP97, and autophagy. This study showed that zacopride could improve cardiac remodeling via facilitating Kir2.1 forward trafficking, and negatively regulating calcium-activated and PI3K/Akt/mTOR signalings, in an IK1-dependent manner.

14.
J Phys Chem Lett ; 12(31): 7519-7525, 2021 Aug 12.
Article En | MEDLINE | ID: mdl-34346683

For most commercial photodetectors (PDs), incident light is illuminated from the top or side of the device, but the opaque electrode (gold, copper, or aluminum, etc.) on the top will block part of the light from entering, wasting the efficiency of light utilization. Herein, to solve this issue, we introduced perovskite nanonet PDs with a hollow vertical structure by using a polystyrene microsphere template. Compared with ordinary thin film devices, our reticulated hollow vertical structure devices not only can enable easy entrance of the light from the reticulated hollow surface of the devices but also can reduce the reflection of light, resulting in better device performance. For our optimal CsPbBr3 perovskite PDs, high photoelectric performances were achieved with the switching ratio up to 4.17 × 104, a detectivity of 7.44 × 1011 Jones, a linear dynamic range of 108 dB, and the rise/fall time of 0.1/0.16 ms. More importantly, because of the reticulated hollow structure, our device performance showed less reduction when the incident light was illuminated from the top than from the bottom. These results may be of great reference value for improving the photoelectric performance of silicon-based devices or deep ultraviolet PDs.

15.
J Phys Chem A ; 125(24): 5355-5364, 2021 Jun 24.
Article En | MEDLINE | ID: mdl-34115508

The structures and binding topologies of two binary van der Waals complexes 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP)···Ne and ···Ar were investigated. The rotational spectra of these two complexes including several isotopic species containing 20Ne, 22Ne, 40Ar, 13C, and hydroxyl D were measured using a chirped pulse Fourier transform microwave spectrometer and a cavity-based Fourier transform microwave spectrometer. While HFIP was shown to exist in both the gauche and trans configurations based on previous reports, the rare gas atom is predicted to attach to HFIP in several different binding topologies, leading to a total of nine possible structural isomers for each complex. Only one isomer was detected for each species, and it corresponds to the most stable one predicted, based on the comparison of the experimental rotational constants and electric dipole moment components with the theoretical predictions and on the isotopic data. We applied quantum theory of atoms in molecules (QTAIM) and electrostatic potential calculations to examine the different rare gas binding sites and to explore the nature of the interactions in these two complexes and several previously reported alcohol···Ar complexes. The effects of fluorination are also discussed by comparison with the binary complexes of isopropanol···Ne and ···Ar.

16.
Curr Pharm Des ; 26(44): 5746-5754, 2020.
Article En | MEDLINE | ID: mdl-32611299

BACKGROUND: Zacopride, a potent antagonist of 5-HT3 receptors and an agonist of 5-HT4 receptors, is a gastrointestinal prokinetic agent. In a previous study, we discovered that zacopride selectively stimulated the inward rectifier potassium current (IK1) in the rat and that agonizing IK1 prevented or eliminated aconitine-induced arrhythmias in rats. OBJECTIVE: Our aims were to confirm that the antiarrhythmic effects of zacopride are mediated by selectively enhancing IK1 in rabbits. METHODS: The effects of zacopride on the function of the main ion channels were investigated using a whole-cell patch-clamp technique in rabbits. Effects of zacopride on cardiac arrhythmias were also explored experimentally both in vivo and in vitro. RESULTS: Zacopride moderately enhanced cardiac IK1 but had no apparent action on voltage-gated sodium current (INa), L- type calcium current (ICa-L), sodium-calcium exchange current (INa/Ca), transient outward potassium current (Ito), or delayed rectifier potassium current (IK) in rabbits. Zacopride also had a marked antiarrhythmic effect in vivo and in vitro. We proved that the resting membrane potential (RMP) was hyperpolarized in the presence of 1 µmol/L zacopride, and the action potential duration (APD) at 90% repolarization (APD90) was shortened by zacopride (0.1-10 µmol/L) in a concentration- dependent manner. Furthermore, zacopride at 1 µmol/L significantly decreased the incidence of drug-induced early afterdepolarization (EAD) in rabbit ventricular myocytes. CONCLUSION: Zacopride is a selective agonist of rabbit cardiac IK1 and that IK1 enhancement exerts potential antiarrhythmic effects.


Pharmaceutical Preparations , Potassium , Action Potentials , Animals , Anti-Arrhythmia Agents/pharmacology , Benzamides , Bridged Bicyclo Compounds, Heterocyclic , Myocytes, Cardiac , Patch-Clamp Techniques , Rabbits , Rats
17.
Nanotechnology ; 31(27): 275204, 2020 Apr 17.
Article En | MEDLINE | ID: mdl-32208372

A new flexible memory element is crucial for mobile and wearable electronics. A new concept for memory operation and innovative device structure with new materials is certainly required to address the bottleneck of memory applications now and in the future. We report a new nonvolatile molecular memory with a new operating mechanism based on two-dimensional (2D) material nanochannel field-effect transistors (FETs). The smallest channel length for our 2D material nanochannel FETs was approximately 30 nm. The modified molecular configuration for charge induced in the nanochannel of the MoS2 FET can be tuned by applying an up-gate voltage pulse, which can vary the channel conductance to exhibit memory states. Through controlling the amounts of triggered molecules through either different gate voltage pulses or gate duration time, multilevel states were obtained in the molecular memory. These new molecular memory transistors exhibited an erase/program ratio of more than three orders of current magnitude and high sensitivity, of a few picoamperes, at the current level. Reproducible operation and four-level states with stable retention and endurance were achieved. We believe this prototype device has potential for use in future memory devices.

18.
Life Sci ; 239: 117075, 2019 Dec 15.
Article En | MEDLINE | ID: mdl-31751587

AIMS: Arrhythmogenesis of chronic myocardial infarction (MI) is associated with the prolongation of action potential, reduction of inward rectifier potassium (IK1, Kir) channels and hyper-activity of Calcium/calmodulin-dependent kinase II (CaMKII) in cardiomyocytes. Zacopride, a selective IK1 agonist, was applied to clarify the cardioprotection of IK1 agonism via a CaMKII signaling on arrhythmias post-MI. METHODS: Male SD rats were implanted wireless transmitter in the abdominal cavity and subjected to left main coronary artery ligation or sham operation. The telemetric ECGs were monitored per day throughout 4 weeks. At the endpoint, isoproterenol (1.28 mg/kg, i.v.) was administered for provocation test. The expressions of Kir2.1 (dominant subunit of IK1 in ventricle) and CaMKII were detected by Western-blotting. KEY FINDINGS: In the telemetric rats post-MI, zacopride significantly reduced the episodes of atrioventricular conduction block (AVB), premature ventricular contraction (PVC), ventricular tachycardia (VT) and ventricular fibrillation (VF), without significant effect on superventricular premature contraction (SPVC). In provocation test, zacopride suppressed the onset of ventricular arrhythmias in conscious PMI or sham rats. The expression of Kir2.1 was significantly downregulated and p-CaMKII was upregulated post-MI, whereas both were restored by zacopride treatment. SIGNIFICANCE: IK1/Kir2.1 might be an attractive target for pharmacological controlling of lethal arrhythmias post MI.


Benzamides/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Myocardial Infarction/physiopathology , Potassium Channels, Inwardly Rectifying/metabolism , Action Potentials , Animals , Arrhythmias, Cardiac/drug therapy , Benzamides/metabolism , Bridged Bicyclo Compounds, Heterocyclic/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Electrocardiography/methods , Heart Ventricles/metabolism , Isoproterenol/pharmacology , Male , Myocytes, Cardiac/metabolism , Potassium Channels, Inwardly Rectifying/physiology , Rats , Rats, Sprague-Dawley , Tachycardia, Ventricular/metabolism
19.
Front Pharmacol ; 10: 929, 2019.
Article En | MEDLINE | ID: mdl-31507422

Intracellular Ca2+ overload, prolongation of the action potential duration (APD), and downregulation of inward rectifier potassium (IK1) channel are hallmarks of electrical remodeling in cardiac hypertrophy and heart failure (HF). We hypothesized that enhancement of IK1 currents is a compensation for IK1 deficit and a novel modulation for cardiac Ca2+ homeostasis and pathological remodeling. In adult Sprague-Dawley (SD) rats in vivo, cardiac hypertrophy was induced by isoproterenol (Iso) injection (i.p., 3 mg/kg/d) for 3, 10, and 30 days. Neonatal rat ventricular myocytes (NRVMs) were isolated from 1 to 3 days SD rat pups and treated with 1 µmol/L Iso for 24 h in vitro. The effects of zacopride, a selective IK1/Kir2.1 channel agonist, on cardiac remodeling/hypertrophy were observed in the settings of 15 µg/kg in vivo and 1 µmol/L in vitro. After exposing to Iso for 3 days and 10 days, rat hearts showed distinct concentric hypertrophy and fibrosis and enhanced pumping function (P < 0.01 or P < 0.05), then progressed to dilatation and dysfunction post 30 days. Compared with the age-matched control, cardiomyocytes exhibited higher cytosolic Ca2+ (P < 0.01 or P < 0.05) and lower SR Ca2+ content (P < 0.01 or P < 0.05) all through 3, 10, and 30 days of Iso infusion. The expressions of Kir2.1 and SERCA2 were downregulated, while p-CaMKII, p-RyR2, and cleaved caspase-3 were upregulated. Iso-induced electrophysiological abnormalities were also manifested with resting potential (RP) depolarization (P < 0.01), APD prolongation (P < 0.01) in adult cardiomyocytes, and calcium overload in cultured NRVMs (P < 0.01). Zacopride treatment effectively retarded myocardial hypertrophy and fibrosis, preserved the expression of Kir2.1 and some key players in Ca2+ homeostasis, normalized the RP (P < 0.05), and abbreviated APD (P < 0.01), thus lowered cytosolic [Ca2 +]i (P < 0.01 or P < 0.05). IK1channel blocker BaCl2 or chloroquine largely reversed the cardioprotection of zacopride. We conclude that cardiac electrical remodeling is concurrent with structural remodeling. By enhancing cardiac IK1, zacopride prevents Iso-induced electrical remodeling around intracellular Ca2+ overload, thereby attenuates cardiac structural disorder and dysfunction. Early electrical interventions may provide protection on cardiac remodeling.

20.
ACS Omega ; 4(2): 4000-4011, 2019 Feb 28.
Article En | MEDLINE | ID: mdl-31459609

Metal-organic frameworks (MOFs) are promising gas adsorbents. Knowledge of the behavior of gas molecules adsorbed inside MOFs is crucial for advancing MOFs as gas capture materials. However, their behavior is not always well understood. In this work, carbon dioxide (CO2) adsorption in the microporous α-Zn3(HCOO)6 MOF was investigated. The behavior of the CO2 molecules inside the MOF was comprehensively studied by a combination of single-crystal X-ray diffraction (SCXRD) and multinuclear solid-state magnetic resonance spectroscopy. The locations of CO2 molecules adsorbed inside the channels of the framework were accurately determined using SCXRD, and the framework hydrogens from the formate linkers were found to act as adsorption sites. 67Zn solid-state NMR (SSNMR) results suggest that CO2 adsorption does not significantly affect the metal center environment. Variable-temperature 13C SSNMR experiments were performed to quantitatively examine guest dynamics. The results indicate that CO2 molecules adsorbed inside the MOF channel undergo two types of anisotropic motions: a localized rotation (or wobbling) upon the adsorption site and a twofold hopping between adjacent sites located along the MOF channel. Interestingly, 13C SSNMR spectroscopy targeting adsorbed CO2 reveals negative thermal expansion (NTE) of the framework as the temperature rose past ca. 293 K. A comparative study shows that carbon monoxide (CO) adsorption does not induce framework shrinkage at high temperatures, suggesting that the NTE effect is guest-specific.

...