Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
1.
Pharmacol Ther ; 263: 108721, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39284368

RESUMEN

Ischaemic stroke (IS) is the second leading cause of death and a major cause of disability worldwide. Currently, the clinical management of IS still depends on restoring blood flow via pharmacological thrombolysis or mechanical thrombectomy, with accompanying disadvantages of narrow therapeutic time window and risk of haemorrhagic transformation. Thus, novel pathophysiological mechanisms and targeted therapeutic candidates are urgently needed. The autophagy-lysosomal pathway (ALP), as a dynamic cellular lysosome-based degradative process, has been comprehensively studied in recent decades, including its upstream regulatory mechanisms and its role in mediating neuronal fate after IS. Importantly, increasing evidence has shown that IS can lead to lysosomal dysfunction, such as lysosomal membrane permeabilization, impaired lysosomal acidity, lysosomal storage disorder, and dysfunctional lysosomal ion homeostasis, which are involved in the IS-mediated defects in ALP function. There is tightly regulated crosstalk between transcription factor EB (TFEB), mammalian target of rapamycin (mTOR) and lysosomal function, but their relationship remains to be systematically summarized. Notably, a growing body of evidence emphasizes the benefits of naturally derived compounds in the treatment of IS via modulation of ALP function. However, little is known about the roles of natural compounds as modulators of lysosomes in the treatment of IS. Therefore, in this context, we provide an overview of the current understanding of the mechanisms underlying IS-mediated ALP dysfunction, from a lysosomal perspective. We also provide an update on the effect of natural compounds on IS, according to their chemical structural types, in different experimental stroke models, cerebral regions and cell types, with a primary focus on lysosomes and autophagy initiation. This review aims to highlight the therapeutic potential of natural compounds that target lysosomal and ALP function for IS treatment.

2.
Phytomedicine ; 133: 155883, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39059268

RESUMEN

BACKGROUND: Vascular dementia (VaD) resulting from chronic cerebral hypoperfusion (CCH) induces cognitive impairment and white matter injury (WMI). We previously found that CCH induces dysfunction of the autophagy-lysosomal pathway (ALP) in white matter (WM) of rats. Enhancing oligodendrocyte autophagy to counteract ALP deficiency is beneficial for cognitive recovery. Pseudogenoside-F11 (PF11), a saponin extracted from Panax quinquefolium l., provides neuroprotective benefits in many animal models of cerebral ischemia and dementia. PURPOSE: To investigate how PF11 affects cognitive deterioration in rats with VaD induced by two vessel occlusion (2VO), and to determine if PF11 regulates ALP dysfunction in WM. METHODS: CCH-related VaD was induced in rats using the 2VO method. PF11 (6, 12, 24 mg/kg, intragastric administration) was given continuously for 4 weeks postoperatively. Behavioral tests related to cognitive function were performed on the 28th day following 2VO. Transmission electron microscopy, immunofluorescence, western blotting and Luxol fast blue staining were used to assess the WMI and the mechanism of action of PF11 in 2VO-induced VaD. RESULTS: PF11 (12 mg/kg) ameliorated 2VO-induced cognitive impairment. PF11 also alleviated WMI on the 28th day following 2VO, as characterized by reduction of neuronal axonal demyelination and axonal loss. Furthermore, PF11 prevented mature oligodendrocytes death by attenuating ALP deficiency in WM on the 14th day following 2VO, as manifested by enhancement of mechanistic target of rapamycin-mediated autophagy and lysosomal function, thereby reducing the aberrant accumulation of autophagy substrates and increasing the level of autophagosomes in WM. In addition, PF11 also prevented microglia and astrocytes from activating in WM on the 28th day following 2VO. CONCLUSION: PF11 significantly ameliorates cognitive impairment and WMI, and the mechanism is at least partly related to lessening ALP dysfunction in WM by enhancing autophagy and reducing lysosomal defects in oligodendrocytes.


Asunto(s)
Autofagia , Disfunción Cognitiva , Demencia Vascular , Ginsenósidos , Lisosomas , Fármacos Neuroprotectores , Ratas Sprague-Dawley , Sustancia Blanca , Animales , Demencia Vascular/tratamiento farmacológico , Autofagia/efectos de los fármacos , Masculino , Disfunción Cognitiva/tratamiento farmacológico , Sustancia Blanca/efectos de los fármacos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Ginsenósidos/farmacología , Ratas , Fármacos Neuroprotectores/farmacología , Modelos Animales de Enfermedad , Panax/química
3.
Br J Cancer ; 131(4): 655-667, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38951697

RESUMEN

BACKGROUND: DNMT3A is a crucial epigenetic regulation enzyme. However, due to its heterogeneous nature and frequent mutation in various cancers, the role of DNMT3A remains controversial. Here, we determine the role of DNMT3A in non-small cell lung cancer (NSCLC) to identify potential treatment strategies. METHODS: To investigate the role of loss-of-function mutations of DNMT3A in NSCLC, CRISPR/Cas9 was used to induce DNMT3A-inactivating mutations. Epigenetic inhibitor library was screened to find the synthetic lethal partner of DNMT3A. Both pharmacological inhibitors and gene manipulation were used to evaluate the synthetic lethal efficacy of DNMT3A/KDM1A in vitro and in vivo. Lastly, MS-PCR, ChIP-qPCR, dual luciferase reporter gene assay and clinical sample analysis were applied to elucidate the regulation mechanism of synthetic lethal interaction. RESULTS: We identified DNMT3A is a tumour suppressor gene in NSCLC and KDM1A as a synthetic lethal partner of DNMT3A deletion. Both chemical KDM1A inhibitors and gene manipulation can selectively reduce the viability of DNMT3A-KO cells through inducing cell apoptosis in vitro and in vivo. We clarified that the synthetic lethality is not only limited to the death mode, but also involved into tumour metastasis. Mechanistically, DNMT3A deficiency induces KDM1A upregulation through reducing the methylation status of the KDM1A promoter and analysis of clinical samples indicated that DNMT3A expression was negatively correlated with KDM1A level. CONCLUSION: Our results provide new insight into the role of DNMT3A in NSCLC and elucidate the mechanism of synthetic lethal interaction between KDM1A and DNMT3A, which might represent a promising approach for treating patients with DNMT3A-deficient tumours.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , ADN (Citosina-5-)-Metiltransferasas , ADN Metiltransferasa 3A , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Animales , Ratones , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Histona Demetilasas/antagonistas & inhibidores , Línea Celular Tumoral , Apoptosis , Ensayos Antitumor por Modelo de Xenoinjerto , Regulación Neoplásica de la Expresión Génica , Femenino
4.
Acta Pharmacol Sin ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914676

RESUMEN

Methamphetamine (METH), an abused psychostimulant, impairs cognition through prolonged or even single-dose exposure, but animal experiments have shown contradictory effects on memory deficits. In this study we investigated the effects and underlying mechanisms of single-dose METH administration on the retrieval of object recognition memory (ORM) in mice. We showed that single-dose METH administration (2 mg/kg, i.p.) significantly impaired ORM retrieval in mice. Fiber photometry recording in METH-treated mice revealed that the activity of prelimbic cortex glutamatergic neurons (PrLGlu) was significantly reduced during ORM retrieval. Chemogenetic activation of PrLGlu or glutamatergic projections from ventral CA1 to PrL (vCA1Glu-PrL) rescued ORM retrieval impairment. Fiber photometry recording revealed that dopamine (DA) levels in PrL of METH-treated mice were significantly increased, and micro-infusion of the D2 receptor (D2R) antagonist sulpiride (0.25 µg/side) into PrL rescued ORM retrieval impairment. Whole-cell recordings in brain slices containing the PrL revealed that PrLGlu intrinsic excitability and basal glutamatergic synaptic transmission were significantly reduced in METH-treated mice, and the decrease in intrinsic excitability was reversed by micro-infusion of Sulpiride into PrL in METH-treated mice. Thus, the impaired ORM retrieval caused by single-dose METH administration may be attributed to reduced PrLGlu activity, possibly due to excessive DA activity on D2R. Selective activation of PrLGlu or vCA1Glu-PrL may serve as a potential therapeutic strategy for METH-induced cognitive dysfunction.

5.
Cell Death Differ ; 31(9): 1140-1156, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38816578

RESUMEN

There is a lack of effective treatments to overcome resistance to EGFR-TKIs in EGFR mutant tumors. A deeper understanding of resistance mechanisms can provide insights into reducing or eliminating resistance, and can potentially deliver targeted treatment measures to overcome resistance. Here, we identified that the dynamic changes of the tumor immune environment were important extrinsic factors driving tumor resistance to EGFR-TKIs in EGFR mutant cell lines and syngeneic tumor-bearing mice. Our results demonstrate that the acquired resistance to EGFR-TKIs is accompanied by aberrant expression of PD-L2, leading a dynamic shift from an initially favorable tumor immune environment to an immunosuppressive phenotype. PD-L2 expression significantly affected EGFR mutant cell apoptosis that depended on the proportion and function of CD8+ T cells in the tumor immune environment. Combined with single-cell sequencing and experimental results, we demonstrated that PD-L2 specifically inhibited the proliferation of CD8+ T cells and the secretion of granzyme B and perforin, leading to reduced apoptosis mediated by CD8+ T cells and enhanced immune escape of tumor cells, which drives EGFR-TKIs resistance. Importantly, we have identified a potent natural small-molecule inhibitor of PD-L2, zinc undecylenate. In vitro, it selectively and potently blocks the PD-L2/PD-1 interaction. In vivo, it abolishes the suppressive effect of the PD-L2-overexpressing tumor immune microenvironment by blocking PD-L2/PD-1 signaling. Moreover, the combination of zinc undecylenate and EGFR-TKIs can synergistically reverse tumor resistance, which is dependent on CD8+ T cells mediating apoptosis. Our study uncovers the PD-L2/PD-1 signaling pathway as a driving factor to mediate EGFR-TKIs resistance, and identifies a new naturally-derived agent to reverse EGFR-TKIs resistance.


Asunto(s)
Resistencia a Antineoplásicos , Proteína 2 Ligando de Muerte Celular Programada 1 , Microambiente Tumoral , Animales , Femenino , Humanos , Ratones , Apoptosis/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inhibidores , Terapia Molecular Dirigida , Proteína 2 Ligando de Muerte Celular Programada 1/metabolismo , Proteína 2 Ligando de Muerte Celular Programada 1/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Microambiente Tumoral/efectos de los fármacos
6.
Proc Natl Acad Sci U S A ; 121(23): e2317790121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38814866

RESUMEN

The transformation of lung adenocarcinoma to small cell lung cancer (SCLC) is a recognized resistance mechanism and a hindrance to therapies using epidermal growth factor receptor tyrosine kinase inhibitors (TKIs). The paucity of pretranslational/posttranslational clinical samples limits the deeper understanding of resistance mechanisms and the exploration of effective therapeutic strategies. Here, we developed preclinical neuroendocrine (NE) transformation models. Next, we identified a transcriptional reprogramming mechanism that drives resistance to erlotinib in NE transformation cell lines and cell-derived xenograft mice. We observed the enhanced expression of genes involved in the EHMT2 and WNT/ß-catenin pathways. In addition, we demonstrated that EHMT2 increases methylation of the SFRP1 promoter region to reduce SFRP1 expression, followed by activation of the WNT/ß-catenin pathway and TKI-mediated NE transformation. Notably, the similar expression alterations of EHMT2 and SFRP1 were observed in transformed SCLC samples obtained from clinical patients. Importantly, suppression of EHMT2 with selective inhibitors restored the sensitivity of NE transformation cell lines to erlotinib and delayed resistance in cell-derived xenograft mice. We identify a transcriptional reprogramming process in NE transformation and provide a potential therapeutic target for overcoming resistance to erlotinib.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Transformación Celular Neoplásica , Clorhidrato de Erlotinib , Neoplasias Pulmonares , Humanos , Animales , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Ratones , Clorhidrato de Erlotinib/farmacología , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Regulación Neoplásica de la Expresión Génica , Resistencia a Antineoplásicos/genética , Vía de Señalización Wnt/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Carcinoma Pulmonar de Células Pequeñas/patología , Transcripción Genética , Antígenos de Histocompatibilidad , N-Metiltransferasa de Histona-Lisina
7.
EMBO Mol Med ; 16(4): 885-903, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38448544

RESUMEN

Cancer is a heterogeneous disease. Although both tumor metabolism and tumor immune microenvironment are recognized as driving factors in tumorigenesis, the relationship between them is still not well-known, and potential combined targeting approaches remain to be identified. Here, we demonstrated a negative correlation between the expression of NAMPT, an NAD+ metabolism enzyme, and PD-L1 expression in various cancer cell lines. A clinical study showed that a NAMPTHigh PD-L1Low expression pattern predicts poor prognosis in patients with various cancers. In addition, pharmacological inhibition of NAMPT results in the transcription upregulation of PD-L1 by SIRT-mediated acetylation change of NF-κB p65, and blocking PD-L1 would induce NAMPT expression through a HIF-1-dependent glycolysis pathway. Based on these findings, we designed and synthesized a dual NAMPT/PD-L1 targeting compound, LZFPN-90, which inhibits cell growth in a NAMPT-dependent manner and blocks the cell cycle, subsequently inducing apoptosis. Under co-culture conditions, LZFPN-90 treatment contributes to the proliferation and activation of T cells and blocks the growth of cancer cells. Using mice bearing genetically manipulated tumors, we confirmed that LZFPN-90 exerted target-dependent antitumor activities, affecting metabolic processes and the immune system. In conclusion, our results demonstrate the relevance of NAD+-related metabolic processes in antitumor immunity and suggest that co-targeting NAD+ metabolism and PD-L1 represents a promising therapeutic approach.


Asunto(s)
Antígeno B7-H1 , Neoplasias , Humanos , Animales , Ratones , NAD , Neoplasias/patología , Proliferación Celular , Apoptosis , Línea Celular Tumoral , Microambiente Tumoral
8.
Cell Rep ; 43(2): 113714, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38306271

RESUMEN

Drug resistance is the leading problem in non-small-cell lung cancer (NSCLC) therapy. The contribution of histone methylation in mediating malignant phenotypes of NSCLC is well known. However, the role of histone methylation in NSCLC drug-resistance mechanisms remains unclear. Here, our data show that EZH2 and G9a, two histone methyltransferases, are involved in the drug resistance of NSCLC. Gene manipulation results indicate that the combination of EZH2 and G9a promotes tumor growth and mediates drug resistance in a complementary manner. Importantly, clinical study demonstrates that co-expression of both enzymes predicts a poor outcome in patients with NSCLC. Mechanistically, G9a and EZH2 interact and promote the silencing of the tumor-suppressor gene SMAD4, activating the ERK/c-Myc signaling pathway. Finally, SU08, a compound targeting both EZH2 and G9a, is demonstrated to sensitize resistant cells to therapeutic drugs by regulating the SMAD4/ERK/c-Myc signaling axis. These findings uncover the resistance mechanism and a strategy for reversing NSCLC drug resistance.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Transducción de Señal , Proteínas Proto-Oncogénicas c-myc/genética , Histonas , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Proteína Smad4/genética , Proteína Potenciadora del Homólogo Zeste 2
9.
Toxicol Appl Pharmacol ; 483: 116807, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38199493

RESUMEN

N6-methyladenosine (m6A) is the most prevalent mRNA modification, and it is verified to be closely correlated with cancer occurrence and progression. The m6A demethylase ALKBH5 (alkB homolog 5) is dysregulated in various cancers. However, the role and underlying mechanism of ALKBH5 in the pathogenesis and especially the chemo-resistance of non-small cell lung cancer (NSCLC) is poorly elucidated. The current study shows that ALKBH5 expression is reduced in paclitaxel (PTX) resistant NSCLC cells and down-regulation of ALKBH5 usually implies poor prognosis of NSCLC patients. Over-expression of ALKBH5 in PTX-resistant cells can suppress cell proliferation and enhance chemo-sensitivity, while knockdown of ALKBH5 exerts the opposite effect, which further supports the tumor suppressive role of ALKBH5. Over-expression of ALKBH5 can also reverse the epithelial-mesenchymal transition (EMT) process in PTX-resistant cancer cells. Mechanistically, data from RNA-seq, real-time PCR and western blotting indicate that CEMIP (cell migration inducing hyaluronidase 1), also known as KIAA1199, may be the downstream target of ALKBH5. Furthermore, ALKBH5 negatively regulates the CEMIP level by reducing the stability of CEMIP mRNA. Collectively, the current data demonstrate that the ALKBH5/CEMIP axis modulates the EMT process in NSCLC, which in turn regulates the chemo-sensitivity of cancer cells to PTX.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Transición Epitelial-Mesenquimal , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Paclitaxel/farmacología , ARN Mensajero/metabolismo
10.
Adv Sci (Weinh) ; 11(7): e2303904, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38072662

RESUMEN

Interactions between oncogenic proteins contribute to the phenotype and drug resistance. Here, EZH2 (enhancer of zest homolog 2) is identified as a crucial factor that mediates HIF-1 (hypoxia-inducible factor) inhibitor resistance. Mechanistically, targeting HIF-1 enhanced the activity of EZH2 through transcription activation of SUZ12 (suppressor of zest 12 protein homolog). Conversely, inhibiting EZH2 increased HIF-1α transcription, but not the transcription of other HIF family members. Additionally, the negative feedback regulation between EZH2 and HIF-1α is confirmed in lung cancer patient tissues and a database of cell lines. Moreover, molecular prediction showed that a newly screened dual-target compound, DYB-03, forms multiple hydrogen bonds with HIF-1α and EZH2 to effectively inhibit the activity of both targets. Subsequent studies revealed that DYB-03 could better inhibit migration, invasion, and angiogenesis of lung cancer cells and HUVECs in vitro and in vivo compared to single agent. DYB-03 showed promising antitumor activity in a xenograft tumor model by promoting apoptosis and inhibiting angiogenesis, which could be almost abolished by the deletion of HIF-1α and EZH2. Notably, DYB-03 could reverse 2-ME2 and GSK126-resistance in lung cancer. These findings clarified the molecular mechanism of cross-regulation of HIF-1α and EZH2, and the potential of DYB-03 for clinical combination target therapy.


Asunto(s)
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Regulación Neoplásica de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/uso terapéutico , Proteína Potenciadora del Homólogo Zeste 2/metabolismo
11.
Clin Cosmet Investig Dermatol ; 16: 3181-3191, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37941849

RESUMEN

Purpose: Psoriasis is a chronic, multi-system skin disease that can be influenced by immunological, environmental, and genetic factors. Plasma metabolomic analysis can provide a great deal of information on potential diagnostic biomarkers, pathogenesis and personalized treatment. However, the role of metabolites in psoriasis is unknown. Patients and Methods: We performed an untargeted metabolomic analysis of plasma based on high-resolution liquid chromatography mass spectrometry from 10 plaque psoriasis patients and 10 healthy controls. Results: A total of 301 differential metabolites were detected, of which 10 metabolites were possible potential biomarkers, including vitamins, amino acids, and lipids. At the same time, KEGG pathway enrichment analysis was performed for all detected differential metabolites, and it was found that protein digestion and absorption, amino acid metabolism and lipid metabolism may be jointly involved in regulating the pathogenesis of psoriasis. In addition, the proteins ESR1, OPRM1 and HSD11B1 were identified as possible potential topical therapeutic targets for psoriasis through analysis of the metabolite-protein interaction network. Conclusion: In this study, we identified 10 differential metabolites as possible potential combinatorial biomarkers for the diagnosis of psoriasis. 12 metabolic pathways were significantly enriched that may be closely related to the occurrence and development of psoriasis. Three proteins, ESR1, OPRM1, and HSD11B1, were identified as possible potential therapeutic targets for psoriasis.

12.
Acta Pharm Sin B ; 13(5): 2107-2123, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37250159

RESUMEN

Cognitive impairment caused by chronic cerebral hypoperfusion (CCH) is associated with white matter injury (WMI), possibly through the alteration of autophagy. Here, the autophagy-lysosomal pathway (ALP) dysfunction in white matter (WM) and its relationship with cognitive impairment were investigated in rats subjected to two vessel occlusion (2VO). The results showed that cognitive impairment occurred by the 28th day after 2VO. Injury and autophagy activation of mature oligodendrocytes and neuronal axons sequentially occurred in WM by the 3rd day. By the 14th day, abnormal accumulation of autophagy substrate, lysosomal dysfunction, and the activation of mechanistic target of rapamycin (MTOR) pathway were observed in WM, paralleled with mature oligodendrocyte death. This indicates autophagy activation was followed by ALP dysfunction caused by autophagy inhibition or lysosomal dysfunction. To target the ALP dysfunction, enhanced autophagy by systemic rapamycin treatment or overexpression of Beclin1 (BECN1) in oligodendrocytes reduced mature oligodendrocyte death, and subsequently alleviated the WMI and cognitive impairment after CCH. These results reveal that early autophagy activation was followed by ALP dysfunction in WM after 2VO, which was associated with the aggravation of WMI and cognitive impairment. This study highlights that alleviating ALP dysfunction by enhancing oligodendrocyte autophagy has benefits for cognitive recovery after CCH.

13.
Cell Mol Life Sci ; 80(6): 160, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37210406

RESUMEN

We previously reported that permanent ischemia induces marked dysfunction of the autophagy-lysosomal pathway (ALP) in rats, which is possibly mediated by the transcription factor EB (TFEB). However, it is still unclear whether signal transducer and activator of transcription 3 (STAT3) is responsible for the TFEB-mediated dysfunction of ALP in ischemic stroke. In the present study, we used AAV-mediated genetic knockdown and pharmacological blockade of p-STAT3 to investigate the role of p-STAT3 in regulating TFEB-mediated ALP dysfunction in rats subjected to permanent middle cerebral occlusion (pMCAO). The results showed that the level of p-STAT3 (Tyr705) in the rat cortex increased at 24 h after pMCAO and subsequently led to lysosomal membrane permeabilization (LMP) and ALP dysfunction. These effects can be alleviated by inhibitors of p-STAT3 (Tyr705) or by STAT3 knockdown. Additionally, STAT3 knockdown significantly increased the nuclear translocation of TFEB and the transcription of TFEB-targeted genes. Notably, TFEB knockdown markedly reversed STAT3 knockdown-mediated improvement in ALP function after pMCAO. This is the first study to show that the contribution of p-STAT3 (Tyr705) to ALP dysfunction may be partly associated with its inhibitory effect on TFEB transcriptional activity, which further leads to ischemic injury in rats.


Asunto(s)
Autofagia , Factor de Transcripción STAT3 , Animales , Ratas , Autofagia/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Isquemia/metabolismo , Lisosomas/metabolismo , Fosforilación , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
14.
Sci Adv ; 9(22): eadc9273, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37256945

RESUMEN

Lung cancer is a lethal malignancy lacking effective therapies. Emerging evidence suggests that epigenetic enzyme mutations are closely related to the malignant phenotype of lung cancer. Here, we identified a series of gain-of-function mutations in the histone methyltransferase DOT1L. The strongest of them is R231Q, located in the catalytic DOT domain. R231Q can enhance the substrate binding ability of DOT1L. Moreover, R231Q promotes cell growth and drug resistance of lung cancer cells in vitro and in vivo. Mechanistic studies also revealed that the R231Q mutant specifically activates the MAPK/ERK signaling pathway by enriching H3K79me2 on the RAF1 promoter and epigenetically regulating the expression of downstream targets. The combination of a DOT1L inhibitor (SGC0946) and a MAPK/ERK axis inhibitor (binimetinib) can effectively reverse the R231Q-induced phenomena. Our results reveal gain-of-function mutations in an epigenetic enzyme and provide promising insights for the precise treatment of lung cancer patients.


Asunto(s)
Mutación con Ganancia de Función , Neoplasias Pulmonares , Humanos , Dominio Catalítico , Transducción de Señal , Proliferación Celular , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , N-Metiltransferasa de Histona-Lisina/genética
15.
J Med Chem ; 66(8): 5685-5702, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37021456

RESUMEN

In recent years, it has been proposed that G9a/EZH2 dual inhibition is a promising cancer treatment strategy. Herein, we present the discovery of G9a/EZH2 dual inhibitors that merge the pharmacophores of G9a and EZH2 inhibitors. Among them, the most promising compound 15h displayed potent inhibitory activities against G9a (IC50 = 2.90 ± 0.05 nM) and EZH2 (IC50 = 4.35 ± 0.02 nM), superior antiproliferative profiles against RD (CC50 = 19.63 ± 0.18 µM) and SW982 (CC50 = 19.91 ± 0.50 µM) cell lines. In vivo, 15h achieved significant antitumor efficacy in a xenograft mouse model of human rhabdoid tumor with a tumor growth inhibitory rate of 86.6% without causing observable toxic effects. The on-target activity assays illustrated that compound 15h can inhibit tumor growth by specifically inhibiting EZH2 and G9a. Therefore, 15h is a potential anticancer drug candidate for the treatment of malignant rhabdoid tumor.


Asunto(s)
Antineoplásicos , Tumor Rabdoide , Humanos , Ratones , Animales , Tumor Rabdoide/tratamiento farmacológico , Lisina/farmacología , N-Metiltransferasa de Histona-Lisina , Inhibidores Enzimáticos/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular , Proteína Potenciadora del Homólogo Zeste 2
16.
Eur J Med Chem ; 250: 115171, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36774697

RESUMEN

Hypoxia-inducible factor-1 (HIF-1) as a key mediator in tumor metastasis, angiogenesis and poor patient prognosis, has been recognized as an important cancer drug target. Up to now, some HIF-1 inhibitors with diverse skeletal structures were reported as anticancer agents, mostly natural product-derived compounds. In this study, we designed and synthesized a series of chalcone-based compounds with 2,2-dimethylbenzopyran using the combination principles to select benzopyrans and chalcones natural products. A novel series of chalcone-based compounds with 2,2-dimethylbenzopyran were evaluated as HIF-1 inhibitor. HRE luciferase reporter assay demonstrated compounds showed superior HIF-1 inhibitory activity. Among them, compound 16e exhibited the best features: the strongest HIF-1 inhibitory activity (IC50 = 2.38 µM, 3-fold higher than that of LXH-SYP-7). Meanwhile, it also significantly suppressed migration and VEGF-induced invasion of A549 cells in nontoxic concentrations. Additionally, tube formation assay demonstrated its anti-angiogenesis activity. Moreover, the in vivo study indicated that compound 16e could retard angiogenesis in the matrigel plug assay model, and almost no new blood vessels were formed in the suppository when it reached 20 µM. Finally, we also performed a subchronic toxicity test in which doses up to 50 mg/kg were administered orally for 10 days in Kunming mice with no toxic adverse effects and were well tolerated. These findings support the further investigation on the anti-invasive and anti-angiogenic potential of this class of compounds as HIF-1 inhibitor.


Asunto(s)
Antineoplásicos , Chalcona , Chalconas , Ratones , Animales , Humanos , Chalcona/farmacología , Chalconas/farmacología , Antineoplásicos/farmacología , Células A549 , Subunidad alfa del Factor 1 Inducible por Hipoxia , Línea Celular Tumoral
17.
Theranostics ; 13(3): 1059-1075, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36793868

RESUMEN

Background: Depression is a mental disorder that poses a serious threat to human health. Adult hippocampal neurogenesis (AHN) is closely associated with the efficacy of antidepressants. Chronic treatment with corticosterone (CORT), a well-validated pharmacological stressor, induces depressive-like behaviors and suppresses AHN in experimental animals. However, the possible mechanisms of chronic CORT action remain elusive. Methods: A chronic CORT treatment (0.1 mg/mL, drinking water for 4 weeks) was applied to prepare a mouse model of depression. Immunofluorescence was performed to analyze the hippocampal neurogenesis lineage, and immunoblotting, immunofluorescence, electron microscopy, and adeno-associated virus (AAV) expressing a pH-sensitive tandemly tagged light chain 3 (LC3) protein were used to analyze neuronal autophagy. AAV-hSyn-miR30-shRNA was used to knock down autophagy-related gene 5 (Atg5) expression in the neurons. Results: Chronic CORT induces depressive-like behaviors and decreases the expression of neuronal brain-derived neurotrophic factor (BDNF) in the dentate gyrus (DG) of the hippocampus in mice. Moreover, it markedly diminishes the proliferation of neural stem cells (NSCs), neural progenitor cells, and neuroblasts and impairs the survival and migration of newborn immature and mature neurons in the DG, which may be attributed to changes in the cell cycle kinetics and induction of NSCs apoptosis. Furthermore, chronic CORT induces hyperactive neuronal autophagy in the DG, possibly by increasing the expression of ATG5 and causing excess lysosomal degradation of BDNF in neurons. Notably, inhibiting hyperactive neuronal autophagy in the DG of mice by knocking down Atg5 in neurons using RNA interference reverses the decrease of neuronal BDNF expression, rescues AHN, and exerts antidepressant effects. Conclusion: Our findings reveal a neuronal autophagy-dependent mechanism that links chronic CORT to reduced neuronal BDNF levels, AHN suppression and depressive-like behavior in mice. In addition, our results provide insights for treating depression by targeting neuronal autophagy in the DG of the hippocampus.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Depresión , Hipocampo , Neurogénesis , Adulto , Animales , Humanos , Ratones , Autofagia , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Corticosterona , Depresión/inducido químicamente , Hipocampo/metabolismo
18.
Apoptosis ; 27(11-12): 1015-1030, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36107354

RESUMEN

Taxane agents are of particular interest in non-small cell lung carcinomas (NSCLC) treatment, while multidrug resistance (MDR) mediated by P-glycoprotein (P-gp) limits their clinical efficacy. TM2, a chemically semi-synthesized taxane derivative, exerted significant anti-cancer efficacy in vitro and in vivo, especially against vincristine-resistant and adriamycin-resistant cancer cells. In this study, the anti-cancer effect of TM2 on drug-resistant NSCLC was evaluated both in vitro and in vivo, and the mechanism underlying its anti-MDR activity was further clarified. It was found that TM2 was significantly cytotoxic to cisplatin- and paclitaxel-resistant A549 (human non-small cell lung cancer) cells that overexpressing P-gp, resulting in IC50 values of 0.19 µM and 0.12 µM. TM2 micelles (5 mg/kg, 10 mg/kg, 20 mg/kg, i.v., 21 days) inhibited the growth of MDR xenograft with the maximal inhibitory rate up to 80.4%. Moreover, TM2 caused cell cycle arrest in the G2-M phase and apoptosis in drug-resistant cells through promoting tubulin polymerization, which acted in a way similar to taxane agents. Notably, TM2 acted as a P-gp inhibitor with high binding affinity, which resulted in impaired efflux function through forming H-bonds and ATP hydrolysis to induce P-gp conformational alterations. These findings indicated that TM2 displays anti-MDR activity with the potential for the treatment of NSCLC, which can inhibit P-gp function and stabilize microtubule polymerization.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Polimerizacion , Resistencia a Antineoplásicos , Apoptosis , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Resistencia a Múltiples Medicamentos , Taxoides/farmacología , Taxoides/metabolismo , Taxoides/uso terapéutico , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Antineoplásicos/uso terapéutico , Microtúbulos , Línea Celular Tumoral
19.
Mol Cancer ; 21(1): 106, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35477569

RESUMEN

BACKGROUND: Lung cancer is a kind of malignancy with high morbidity and mortality worldwide. Paclitaxel (PTX) is the main treatment for non-small cell lung cancer (NSCLC), and resistance to PTX seriously affects the survival of patients. However, the underlying mechanism and potential reversing strategy need to be further explored. METHODS: We identified ALDH2 as a PTX resistance-related gene using gene microarray analysis. Subsequently, a series of functional analysis in cell lines, patient samples and xenograft models were performed to explore the functional role, clinical significance and the aberrant regulation mechanism of ALDH2 in PTX resistance of NSCLC. Furthermore, the pharmacological agents targeting ALDH2 and epigenetic enzyme were used to investigate the diverse reversing strategy against PTX resistance. RESULTS: Upregulation of ALDH2 expression is highly associated with resistance to PTX using in vitro and in vivo analyses of NSCLC cells along with clinicopathological analyses of NSCLC patients. ALDH2-overexpressing NSCLC cells exhibited significantly reduced PTX sensitivity and increased biological characteristics of malignancy in vitro and tumor growth and metastasis in vivo. EHMT2 (euchromatic histone lysine methyltransferase 2) inhibition and NFYA (nuclear transcription factor Y subunit alpha) overexpression had a cooperative effect on the regulation of ALDH2. Mechanistically, ALDH2 overexpression activated the RAS/RAF oncogenic pathway. NSCLC/PTX cells re-acquired sensitivity to PTX in vivo and in vitro when ALDH2 was inhibited by pharmacological agents, including the ALDH2 inhibitors Daidzin (DZN)/Disulfiram (DSF) and JIB04, which reverses the effect of EHMT2. CONCLUSION: Our findings suggest that ALDH2 status can help predict patient response to PTX therapy and ALDH2 inhibition may be a promising strategy to overcome PTX resistance in the clinic.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Aldehído Deshidrogenasa Mitocondrial , Factor de Unión a CCAAT/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Resistencia a Antineoplásicos/genética , Antígenos de Histocompatibilidad , N-Metiltransferasa de Histona-Lisina , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Factores de Transcripción
20.
Phytomedicine ; 100: 154033, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35316727

RESUMEN

BACKGROUND: Chronic excessive ethanol consumption damages the central nervous system and causes neurobehavioral changes, such as cognitive impairment, which is related to oxidative stress and inhibition of neurogenesis in the hippocampus. It is known that promoting neurogenesis improves learning memory, anxiety and depression. Lycium barbarum L. polyphenol (LBP) is the main active ingredient of Lycium barbarum L., which has excellent neuroprotective effects. However, the effects and mechanisms of LBP on ethanol-induced cognitive impairment are unclear. PURPOSE: To assess the effects and mechanisms of LBP on ethanol-induced cognitive impairment in mice. METHODS: Eight-weeks-old adult C57BL/6J mice were allowed to drink ethanol (10%) to establish a model of ethanol-induced cognitive impairment. From the 29th day of LBP (25, 50, 100, 200, 400 mg/kg, intragastric administration), the locomotor activity, novel object recognition (NOR), Y maze and Morris water maze (MWM) were sequentially performed to investigate the effect of LBP on ethanol-induced cognitive impairment in mice. Next, enzyme-linked immunosorbent assay, immunofluorescence, and western blotting were used to study the underlying mechanism of LBP on ethanol-induced cognitive impairment. RESULTS: LBP significantly decreased the escape latency and increased the number of crossings of the original platform in MWM, increased the spontaneous alteration behavior in the Y maze, and increased the preference index in the NOR in ethanol-induced mice. Notably, LBP significantly promoted the proliferation of neural stem cells, neural progenitor cells and neuroblasts, and increased the proportion of activated NSCs in mice with ethanol-induced cognitive impairment. Similarly, LBP significantly increased the number of newborn immature neurons and mature neurons. Moreover, LBP increased the levels of nuclear factor erythroid2-related factor 2 (Nrf2) and the downstream heme oxygenase-1(HO-1) protein expression, which led to a decrease of oxidative stress levels. CONCLUSION: LBP significantly improves cognitive impairment in ethanol-induced mice, which is attributed to the promotion of hippocampal neurogenesis and reduction of oxidative stress.


Asunto(s)
Disfunción Cognitiva , Medicamentos Herbarios Chinos , Lycium , Animales , Apoptosis , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Etanol/efectos adversos , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Polifenoles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA