Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 93
1.
Adv Mater ; : e2403033, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38648668

Carbonaceous materials are regarded as one of the most promising anodes for potassium-ion batteries (PIBs), but their rate capabilities are largely limited by the slow solid-state potassium diffusion kinetics inside anode and sluggish interfacial potassium ion transfer process. Herein, high-rate and high-capacity PIBs are demonstrated by facile topological defect-regulation of the microstructure of carbon anodes. The carbon lattice of the as-obtained porous carbon nanosheets (CNSs) with abundant topological defects (TDPCNSs) holds relatively high potassium adsorption energy yet low potassium migration barrier, thereby enabling efficient storage and diffusion of potassium inside graphitic layers. Moreover, the topological defects can induce preferential decomposition of anions, leading to the formation of high potassium ion conductive solid electrolyte interphase (SEI) film with decreased potassium ion de-solvation and transfer barrier. Additionally, the dominant sp2-hybridized carbon conjugated skeleton of TDPCNSs enables high electrical conductivity (39.4 S cm-1) and relatively low potassium storage potential. As a result, the as-constructed TDPCNSs anode demonstrates high potassium storage capacity (504 mA h g-1 at 0.1 A g-1), remarkable rate capability (118 mA h g-1 at 40 A g-1), as well as long-term cycling stability.

2.
Adv Sci (Weinh) ; : e2309586, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38686448

Easy injection, long-lasting barrier, and drug loading are the critical properties of submucosal injection materials for endoscopic surgery. However, conventional injectable polymers face challenges in simultaneously attaining these properties due to the inherent conflict between injectability and in situ stability. Here, a multi-arm star polymer hydrogel (denoted as ßCP hydrogel) with long-lasting submucosal barrier (exceeding 120 min), rapid hemostasis, and sustained antibacterial properties is successfully developed by grafting poly(oligo(ethylene glycol) methyl ether methacrylate) (PEGMA) side-chains from ß-CD via atom transfer radical polymerization (ATRP). During the onset of shearing, ßCP hydrogel experiences the unwinding of polymer side-chains between neighboring star polymers, which facilitates the process of endoscopic injectability. After submucosal injection, ßCP hydrogel undergoes the winding of polymer side-chains, thereby establishing a long-lasting barrier cushion. Meanwhile, owing to its distinctive structures with a hydrophobic inner cavity and an outer layer of hydrophilic polymer side-chains, ßCP hydrogel enables simultaneous loading and on-demand release of diverse categories of drugs. This unique performance can adapt to the diverse demands during different stages of wound healing in a porcine endoscopic surgery model. These results indicate an appealing prospect for new application of star polymers as a good submucosal injection material in endoscopic treatments.

3.
Adv Mater ; : e2307845, 2024 Feb 26.
Article En | MEDLINE | ID: mdl-38408735

Contamination tolerance and long-term mechanical support are the two critical properties of meshes for contaminated abdominal wall defect repair. However, biological meshes with excellent pollution tolerance fail to provide bio-adaptive long-term mechanical support due to their rapid degradation. Here, a novel double-layer asymmetric porous mesh (SIS/PVA-EXO) is designed by simple and efficient in situ freeze-thaw of sticky polyvinyl alcohol (PVA) solution on the loosely porous surface of small intestinal submucosal decellularized matrix (SIS), which can successfully repair the contaminated abdominal wall defect with bio-adaptive dynamic mechanical support through only single-stage surgery. The exosome-loaded degradable loosely porous SIS layer accelerates the tissue healing; meanwhile, the exosome-loaded densely porous PVA layer can maintain long-term mechanical support without any abdominal adhesion. In addition, the tensile strength and strain at break of SIS/PVA-EXO mesh change gradually from 0.37 MPa and 210% to 0.10 MPa and 385% with the degradation of SIS layer. This unique performance can dynamically adapt to the variable mechanical demands during different periods of contaminated abdominal wall reconstruction. As a result, this SIS/PVA-EXO mesh shows an attractive prospect in the treatment of contaminated abdominal wall defect without recurrence by integrating local immune regulation, tissue remodeling, and dynamic mechanical supporting.

4.
Adv Mater ; 36(19): e2309141, 2024 May.
Article En | MEDLINE | ID: mdl-38339915

Articular cartilage has an appropriate multilayer structure and superior tribological properties and provides a structural paradigm for design of lubricating materials. However, mimicking articular cartilage traits on prosthetic materials with durable lubrication remains a huge challenge. Herein, an ingenious three-in-one strategy is developed for constructing an articular cartilage-like bilayer hydrogel coating on the surface of ultra-high molecular weight polyethylene (BH-UPE), which makes full use of conceptions of interfacial interlinking, high-entanglement crosslinking, and interface-modulated polymerization. The hydrogel coating is tightly interlinked with UPE substrate through hydrogel-UPE interchain entanglement and bonding. The hydrogel chains are highly entangled with each other to form a dense tough layer with negligible hysteresis for load-bearing by reducing the amounts of crosslinker and hydrophilic initiator to p.p.m. levels. Meanwhile, the polymerization of monomers in the top surface region is suppressed via interface-modulated polymerization, thus introducing a porous surface for effective aqueous lubrication. As a result, BH-UPE exhibits an ultralow friction coefficient of 0.0048 during 10 000 cycles under a load of 0.9 MPa, demonstrating great potential as an advanced bearing material for disc prosthesis. This work may provide a new way to build stable bilayer coatings and have important implications for development of biological lubricating materials.

5.
Nat Commun ; 15(1): 119, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38168072

The sophisticated hierarchical structure that precisely combines contradictory mechanical and biological characteristics is ideal for biomaterials, but it is challenging to achieve. Herein, we engineer a spatiotemporally hierarchical guided bone regeneration (GBR) membrane by rational bilayer integration of densely porous N-halamine functionalized bacterial cellulose nanonetwork facing the gingiva and loosely porous chitosan-hydroxyapatite composite micronetwork facing the alveolar bone. Our GBR membrane asymmetrically combine stiffness and flexibility, ingrowth barrier and ingrowth guiding, as well as anti-bacteria and cell-activation. The dense layer has a mechanically matched space maintenance capacity toward gingiva, continuously blocks fibroblasts, and prevents bacterial invasion with multiple mechanisms including release-killing, contact-killing, anti-adhesion, and nanopore-blocking; the loose layer is ultra-soft to conformally cover bone surfaces and defect cavity edges, enables ingrowth of osteogenesis-associated cells, and creates a favorable osteogenic microenvironment. As a result, our all-in-one porous membrane possesses full protective abilities in GBR.


Bone Regeneration , Membranes, Artificial , Porosity , Bone Regeneration/physiology , Osteogenesis , Biocompatible Materials/chemistry
6.
Adv Mater ; 36(11): e2305400, 2024 Mar.
Article En | MEDLINE | ID: mdl-38010313

Wet-adhesive hydrogels have been developed as an attractive strategy for tissue repair. However, achieving simultaneously low swelling and high burst pressure tolerance of wet-adhesive hydrogels is crucial for in vivo application which remains challenges. Herein, a novel super-structured porous hydrogel (denoted as PVA/PAAc-N+ ) is designed via facile moisture-induced phase separation-solvent exchange process for obtaining porous polyvinyl alcohol (PVA) hydrogel as dissipative layer and in situ photocuring technology for entangling quaternary ammonium-functionalized poly(acrylic acid)-based wet-adhesive layer (PAAc-N+ ) with the porous surface of PVA layer. Benefitting from the ionic crosslinking between quaternary ammonium ions and carboxylate ions in PAAc-N+ wet-adhesive layer as well as the high crystallinity induced by abundant hydrogen bonds of PVA layer, the hydrogel has unique ultralow swelling property (0.29) without sacrificing adhesion strength (63.1 kPa). The porous structure of PVA facilitates the mechanical interlock at the interface between PAAc-N+ wet-adhesive layer and tough PVA dissipative layer, leading to the ultrahigh burst pressure tolerance up to 493 mm Hg and effective repair for porcine heart rupture; the PVA layer surface of PVA/PAAc-N+ hydrogel can prevent postoperative adhesion. By integrating ultralow swelling, ultrahigh burst pressure tolerance, and anti-postoperative adhesion properties, PVA/PAAc-N+ hydrogel shows an appealing application prospect for tissue repair.


Ammonium Compounds , Hydrogels , Animals , Swine , Hydrogels/chemistry , Tissue Adhesions/prevention & control , Biocompatible Materials/chemistry , Ions , Polyvinyl Alcohol/chemistry
7.
Adv Sci (Weinh) ; 11(3): e2305078, 2024 Jan.
Article En | MEDLINE | ID: mdl-38030556

The integration of hydrogels with bio-friendly functional components through simple and efficient strategies to construct wound dressings with broad-spectrum antibacterial and immunomodulatory properties to promote the healing of infected diabetic wounds is highly desirable but remains a major challenge. Here, wormwood essential oil (WEO) is effectively encapsulated in the hydrogel via an O/W-Pickering emulsion during the polymerization of methacrylic anhydride gelatin (GelMA), acrylamide (AM), and acrylic acid N-hydroxysuccinimide ester (AAc-NHS) to form a multifunctional hydrogel dressing (HD-WEO). Compared with conventional emulsions, Pickering emulsions not only improve the encapsulation stability of the WEO, but also enhance the tensile and swelling properties of hydrogel. The synergistic interaction of WEO's diverse bioactive components provides a broad-spectrum antibacterial activity against S. aureus, E. coli, and MRSA. In addition, the HD-WEO can induce the polarization of macrophages from M1 to M2 phenotype. With these advantages, the broad-spectrum antibacterial and immunomodulatory HD-WEO effectively promotes the collagen deposition and neovascularization, thereby accelerating the healing of MRSA-infected diabetic wounds.


Acrylates , Artemisia , Diabetes Mellitus , Oils, Volatile , Hydrogels , Escherichia coli , Staphylococcus aureus , Wound Healing , Anti-Bacterial Agents/pharmacology , Esters
8.
Adv Sci (Weinh) ; 10(31): e2304243, 2023 11.
Article En | MEDLINE | ID: mdl-37661933

Due to the complex microenvironment and healing process of diabetic wounds, developing wound dressing with good biocompatibility, mechanical stability, breathability, exudate management, antibacterial ability, and immunomodulatory property is highly desired but remains a huge challenge. Herein, a multifunctional cryogel is designed and prepared with bio-friendly bacterial cellulose, gelatin, and dopamine under the condition of sodium periodate oxidation. Bacterial cellulose can enhance the mechanical stability of the cryogel by improving the skeleton supporting effect and crosslinking degree. The cryogel shows outstanding breathability and exudate management capability thanks to the interpenetrated porous structures. I2 and sodium iodides produced in situ by reduction of sodium periodate provide efficient antibacterial properties for the cryogel. The cryogel facilitates macrophage polarization from M1 to M2, thus regulating the immune microenvironment of infected diabetic wounds. With these advantages, the multifunctional cryogel effectively promotes collagen deposition and neovascularization, thus accelerating the healing of infected diabetic wounds.


Cryogels , Diabetes Mellitus , Humans , Wound Healing , Bacteria , Cellulose , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/chemistry
9.
Adv Sci (Weinh) ; 10(16): e2206981, 2023 06.
Article En | MEDLINE | ID: mdl-37029705

In guided bone regeneration surgery, a barrier membrane is usually used to inhibit soft tissue from interfering with osteogenesis. However, current barrier membranes usually fail to resist the impact of external forces on bone-augmented region, thus causing severe displacement of membranes and their underlying bone graft materials, eventually leading to unsatisfied bone augmentation. Herein, a new class of local double-layered adhesive barrier membranes (ABMs) is developed to successfully immobilize bone graft materials. The air-dried adhesive hydrogel layers with suction-adhesion properties enable ABMs to firmly adhere to the wet bone surface through a "stick-and-use" band-aid-like strategy and effectively prevent the displacement of membranes and the leakage of bone grafts in uncontained bone defect treatment. Furthermore, the strategy is versatile for preparing diverse adhesive barrier membranes and immobilizing different bone graft materials for various surgical regions. By establishing such a continuous barrier for the bone graft material, this strategy may open a novel avenue for designing the next-generation barrier membranes.


Bone Regeneration , Osteogenesis , Bone Transplantation
10.
Adv Sci (Weinh) ; 10(15): e2206924, 2023 May.
Article En | MEDLINE | ID: mdl-36987974

With the overconsumption of disposable plastics, there is a considerable emphasis on the recycling of waste plastics to relieve the environmental, economic, and health-related consequences. Here, a sulfur-assisted pyrolysis strategy is demonstrated for versatile upcycling of plastics into high-value carbons with an ultrahigh carbon-atom recovery (up to 85%). During the pyrolysis process, the inexpensive elemental sulfur molecules are covalently bonded with polymer chains, and then thermally stable intermediates are produced via dehydrogenation and crosslinking, thereby inhibiting the decomposition of plastics into volatile small hydrocarbons. In this manner, the carbon products obtained from real-world waste plastics exhibit sulfur-rich skeletons with an enlarged interlayer distance, and demonstrate superior sodium storage performance. It is believed that the present results offer a new solution to alleviate plastic pollution and reduce the carbon footprint of plastic industry.

11.
Adv Mater ; 35(21): e2211471, 2023 May.
Article En | MEDLINE | ID: mdl-36807410

The development of highly sophisticated biomimetic models is significant yet remains challenging in the electrochemical energy storage field. Lithium-sulfur (Li-S) cells with high sulfur content and high-sulfur-loading cathodes are urgently required to meet the fast-growing demand for electronic devices. Nevertheless, such cathode materials generally suffer from large sulfur agglomeration, nonporous structure, and insufficient conductivity, leading to rapid capacity decay and low sulfur utilization. Herein, inspired by rough endoplasmic reticulum, a 2D polystyrene (PS)-brush-based (G-g-PS) superhigh-sulfur-content (96 wt%) composite(G-g-sPS@S) is fabricated via the vulcanization reaction. The vulcanized PS side-chains and their S8 composites on the nanosheet surface can efficiently provide sulfur species, and the intersheet interstitial pores can provide rapid mass-transfer channels for redox reactions of sulfur species. Furthermore, the highly sulfophilic vulcanized PS side-chains are able to effectively inhibit the shuttle effect of polysulfides and regulate their redox process. With these merits, the cells with G-g-sPS@S cathodes exhibit an ultralow decay rate of 0.02% per cycle over 400 cycles at 2 C and deliver a superior areal capacity of 12.6 mAh cm-2 even with a high sulfur loading of 10.5 mg cm-2 .

12.
Small ; 19(20): e2207821, 2023 May.
Article En | MEDLINE | ID: mdl-36807771

Carbon-based polymer brushes (CBPBs) are an important class of functional polymer materials, which synergistically combine the advantageous properties of both carbons and polymers. However, the conventional fabrication procedures of CBPBs involve tedious multistep modification, including preoxidation of carbon substrates, introduction of initiating groups, and subsequent graft polymerization. In this study, a simple yet versatile defect-engineering strategy is proposed for the efficient synthesis of high-grafting-density CBPBs with highly stable CC linkages via free radical polymerization. This strategy involves the introduction and removal of nitrogen heteroatoms in the carbon skeletons via a simple temperature-Fmed heat treatment, leading to the formation of numerous carbon defects (e.g., pentagons, heptagons, and octagons) with reactive C=C bonds in the carbon substrates. The as-proposed methodology enables the facile fabrication of CBPBs with various carbon substrates and polymers. More importantly, the highly grafted polymer chains in the resulting CBPBs are tethered with the carbon skeletons by robust CC bonds, which can endure strong acid and alkali environments. These interesting findings will shed new light on the well-orchestrated design of CBPBs and broaden their applications in various areas with fascinating performances.

13.
Small ; 19(8): e2205714, 2023 Feb.
Article En | MEDLINE | ID: mdl-36509641

Low removal efficiency, long treatment time, and high energy consumption hinder advanced and eco-friendly use of traditional adsorbents and separation membranes. Here, a class of amphiphilically modified 2D porous polymeric nanosandwich is designed and is subsequently assembled into adsorptive membranes. The 2D nanosandwich is gifted with high porosity and excellent pore accessibility, demonstrating rapid adsorption kinetics. The as-assembled membrane integrates unimpeded interlayer channels and well-developed, amphiphilic, and highly accessible intralayer nanopores, leading to ultrafast water permeation (1.2 × 104  L m-2  h-1  bar-1 ), high removal efficiency, and easy regeneration. The family of the membrane can be expanded by changing amphiphilic functional groups, further providing treatment of a wide-spectrum of pollutants, including aromatic compounds, pesticide, and pharmaceuticals. It is believed that the novel amphiphilically modified adsorptive membrane offers a distinct water treatment strategy with ultrahigh water permeation and efficient pollutants removal performances, and provides a multiple-in-one solution to the detection and elimination of pollutants.

14.
Adv Sci (Weinh) ; 10(3): e2203788, 2023 01.
Article En | MEDLINE | ID: mdl-36403210

Anti-PD(L)1 immunotherapy recently arises as an effective treatment against triple-negative breast cancer (TNBC) but is only applicable to a small portion of TNBC patients due to the low PD-L1 expression and the immunosuppressive tumor microenvironment (TME). To address these challenges, a multifunctional "drug-like" copolymer that possesses the auto-changeable upper critical solution temperature and the capacity of scavenging reduced nicotinamide adenine dinucleotide phosphate (NADPH) inside tumor cells is synthesized and employed to develop a hypoxia-targeted and BMS202 (small molecule antagonist of PD-1/PD-L1 interactions)-loaded nanomedicine (BMS202@HZP NPs), combining the anti-PD-L1 therapy and the low-dose radiotherapy (LDRT) against TNBC. In addition to the controlled release of BMS202 in the hypoxic TNBC, BMS202@HZP NPs benefit the LDRT by upregulating the pentose phosphate pathway (PPP, the primary cellular source for NADPH) of TME whereas scavenging the NADPH inside tumor cells. As a result, the BMS202@HZP NPs-mediated LDRT upregulate the PD-L1 expression of tumor to promote anti-PD-L1 therapy response while reprogramming the immunometabolism of TME to alleviate its immunosuppression. This innovative nanomedicine-mediated radio-immunometabolism regulation provides a promising strategy to reinforce the anti-PD-L1 therapy against TNBC.


Triple Negative Breast Neoplasms , Humans , NADP/therapeutic use , Triple Negative Breast Neoplasms/therapy , Triple Negative Breast Neoplasms/metabolism , Nanomedicine , Tumor Microenvironment
15.
Adv Mater ; 34(33): e2108437, 2022 Aug.
Article En | MEDLINE | ID: mdl-35680119

Polymeric membranes are considered as promising materials to realize safe and long-life lithium metal batteries (LMBs). However, they are usually based on soft 1D linear polymers and thus cannot effectively inhibit piercing of lithium dendrites at high current density. Herein, single lithium-ion conducting molecular brushes (GO-g-PSSLi) are successfully designed and fabricated with a new 2D "soft-hard-soft" hierarchical structure by grafting hairy lithium polystyrenesulfonate (PSSLi) chains on both sides of graphene oxide (GO) sheets. The ultrathin GO-g-PSSLi membrane is further constructed by evaporation-induced layer-by-layer self-assembly of GO-g-PSSLi molecular brushes. Unlike conventional soft 1D linear polymeric structure, the rigid 2D extended aromatic structure of intralayer GO backbones can bear the shield effect of preventing the dendrites possibly generated at high current density from piercing. More importantly, such a shield effect can be significantly strengthened by layer-by-layer stacking of 2D molecular brushes. On the other hand, the 3D interconnected interlayer channels and the soft single lithium-ion conducting PSSLi side-chains on the surface of channels provide rapid lithium-ion transportation pathways and homogenize lithium-ion flux. As a result, LMBs with GO-g-PSSLi membrane possess long-term reversible lithium plating/striping (6 months) at high current density.

16.
Nat Nanotechnol ; 17(6): 613-621, 2022 Jun.
Article En | MEDLINE | ID: mdl-35469010

The low cycling efficiency and uncontrolled dendrite growth resulting from an unstable and heterogeneous lithium-electrolyte interface have largely hindered the practical application of lithium metal batteries. In this study, a robust all-organic interfacial protective layer has been developed to achieve a highly efficient and dendrite-free lithium metal anode by the rational integration of porous polymer-based molecular brushes (poly(oligo(ethylene glycol) methyl ether methacrylate)-grafted, hypercrosslinked poly(4-chloromethylstyrene) nanospheres, denoted as xPCMS-g-PEGMA) with single-ion-conductive lithiated Nafion. The porous xPCMS inner cores with rigid hypercrosslinked skeletons substantially increase mechanical robustness and provide adequate channels for rapid ionic conduction, while the flexible PEGMA and lithiated Nafion polymers enable the formation of a structurally stable artificial protective layer with uniform Li+ diffusion and high Li+ transference number. With such artificial solid electrolyte interphases, ultralong-term stable cycling at an ultrahigh current density of 10 mA cm-2 for over 9,100 h (>1 year) and unprecedented reversible lithium plating/stripping (over 2,800 h) at a large areal capacity (10 mAh cm-2) have been achieved for lithium metal anodes. Moreover, the protected anodes also show excellent cell stability when paired with high-loading cathodes (~4 mAh cm-2), demonstrating great prospects for the practical application of lithium metal batteries.

17.
Bioact Mater ; 15: 44-52, 2022 Sep.
Article En | MEDLINE | ID: mdl-35386335

Submucosal injection material has shown protective effect against gastrointestinal injury during endoscopic surgery in clinic. However, the protective ability of existing submucosal injection material is strictly limited by their difficult injectability and short barrier time. Herein, we report a shear-thinning gellan gum hydrogel that simultaneously has easy injectability and long-lasting barrier function, together with good hemostatic property and biocompatibility. Shear-thinning property endows our gellan gum hydrogel with excellent endoscopic injection performance, and the injection pressure of our gellan gum hydrogel is much lower than that of the small molecule solution (50 wt% dextrose) when injected through the endoscopic needle. More importantly, our gellan gum hydrogel shows much stronger barrier retention ability than normal saline and sodium hyaluronate solution in the ex vivo and in vivo models. Furthermore, our epinephrine-containing gellan gum hydrogel has a satisfactory hemostatic effect in the mucosal lesion resection model of pig. These results indicate an appealing application prospect for gellan gum hydrogel utilizing as a submucosal injection material in endoscopic surgery.

18.
Macromol Rapid Commun ; 43(14): e2100915, 2022 Jul.
Article En | MEDLINE | ID: mdl-35122361

Developing efficient electrocatalysts to promote the hydrogen evolution reaction (HER) is essential for a green and sustainable future energy supply. For practical applications, it is a challenge to achieve the self-assembly of electrocatalyst from microscopic to macroscopic scales. Herein, a facile strategy is proposed to fabricate a self-supporting electrocatalyst film (CNT-g-PSSCo/PW12 ) for HER by electrostatic interaction-induced self-assembly of cobalt polystyrene sulfonate-grafted carbon nanotube heterogeneous bottlebrush (CNT-g-PSSCo) and polyoxometalate (PW12 ). Co2+ ions of CNT-g-PSSCo can function as junctions for interconnecting neighboring bottlebrushes to form the 3D nanonetwork structure and enable electrostatic capture of negatively charged PW12 nanodots. Moreover, CNT backbones can provide highly conductive pathways to CNT-g-PSSCo/PW12 . Such a self-assembled CNT-g-PSSCo/PW12 displays a low overpotential of 31 mV at a current density of 10 mA cm-2 and a small Tafel slope of 25 mV dec-1 , showing high efficiency toward HER. Furthermore, CNT-g-PSSCo/PW12 with a stable self-supporting film morphology exhibits long-term electrocatalytic stability over 1000 CV cycles without noticeable overpotential change in acidic media. The findings may provide a new avenue for constructing self-assembled functional nanonetwork materials with well-orchestrated structural hierarchy for many applications in energy, environment, catalysis, medicine, and others.


Acids , Hydrogen , Acids/chemistry , Anions , Catalysis , Hydrogen/chemistry , Polyelectrolytes
19.
Chem Soc Rev ; 51(4): 1377-1414, 2022 Feb 21.
Article En | MEDLINE | ID: mdl-35043817

Porous organic polymers (POPs) have emerged as a new class of multifunctional porous materials and received tremendous research attention from both academia and industry. Most POPs are constructed from versatile organic small molecules with diverse linkages through strong covalent bonds. Owing to their high surface area and porosity, low density, high stability, tunable pores and skeletons, and ease of functionalization, POPs have been extensively studied for gas storage and separation, heterogeneous catalysis, biomedicine, sensing, optoelectronics, energy storage and conversion, etc. Particularly, POPs are excellent platforms with exciting opportunities for biomedical applications. Consequently, considerable efforts have been devoted to preparing POPs with an emphasis on their biomedical applications. In this review, first, we briefly describe the different subclasses of POPs and their synthetic strategies and functionalization approaches. Then, we highlight the state-of-the-art progress in POPs for a variety of biomedical applications such as drug delivery, biomacromolecule immobilization, photodynamic and photothermal therapy, biosensing, bioimaging, antibacterial, bioseparation, etc. Finally, we provide our thoughts on the fundamental challenges and future directions of this emerging field.


Drug Delivery Systems , Polymers , Catalysis , Polymers/chemistry , Porosity
20.
Adv Mater ; 34(15): e2108992, 2022 Apr.
Article En | MEDLINE | ID: mdl-34981867

Implantable meshes used in tension-free repair operations facilitate treatment of internal soft-tissue defects. However, clinical meshes fail to achieve anti-deformation, anti-adhesion, and pro-healing properties simultaneously, leading to undesirable surgery outcomes. Herein, inspired by the peritoneum, a novel biocompatible Janus porous poly(vinyl alcohol) hydrogel (JPVA hydrogel) is developed to achieve efficient repair of internal soft-tissue defects by a facile yet efficient strategy based on top-down solvent exchange. The densely porous and smooth bottom-surface of JPVA hydrogel minimizes adhesion of fibroblasts and does not trigger any visceral adhesion, and its loose extracellular-matrix-like porous and rough top-surface can significantly improve fibroblast adhesion and tissue growth, leading to superior abdominal wall defect treatment to commercially available PP and PCO meshes. With unique anti-swelling property (maximum swelling ratio: 6.4%), JPVA hydrogel has long-lasting anti-deformation performance and maintains high mechanical strength after immersion in phosphate-buffered saline (PBS) for 14 days, enabling tolerance to the maximum abdominal pressure in an internal wet environment. By integrating visceral anti-adhesion and defect pro-healing with anti-deformation, the JPVA hydrogel patch shows great prospects for efficient internal soft-tissue defect repair.


Abdominal Wall , Peritoneum , Abdominal Wall/surgery , Biocompatible Materials/pharmacology , Humans , Hydrogels , Porosity , Tissue Adhesions
...