RESUMEN
Cysteine-rich polycomb-like (CPP) proteins are members of a small family of transcription factors, which have been identified and characterized in Arabidopsis, rice, and soybean. In this study, we investigated CPP-like genes in the maize genome. The results revealed 13 putative CPP-like genes, which were found to encode 17 distinct transcripts and were distributed unequally on 7 of 10 maize chromosomes. Analysis of phylogenetic relationships showed that Arabidopsis, rice, and maize CPP-like transcription factors can be grouped into two subfamilies. We also used real-time RT-PCR to evaluate changes in the transcript levels of ZmCPP genes in response to abiotic stresses (heat, cold, salt, and drought stresses). These findings provide an overview of the evolution of the ZmCPP gene family, which will aid in the functional characterization of CPP-like genes in maize growth and development.
Asunto(s)
Proteínas de Plantas/fisiología , Factores de Transcripción/fisiología , Transcriptoma , Zea mays/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Secuencia Conservada , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Filogenia , Análisis de Secuencia de ADN , Estrés Fisiológico , Zea mays/metabolismoRESUMEN
To study the levels of genetic diversity, and population structure, of Houttuynia cordata Thunb, the genetic background and relationships of populations were analyzed in terms of environmental factors. The genetic diversity and population structure of H. cordata were investigated using sequence-related amplified polymorphisms and correlation with environmental factors was analyzed using the SPSS software. Two thousand one hundred sixty-three sites were amplified from 41 pairs of primers, 1825 of which were polymorphic, and the percentage of polymorphic loci was 84.37%; the percentage of polymorphic sites was 72.14 and 67.77% at the species and population level, respectively. The observed number of alleles was 1.52 and 1.30 at species and population level, respectively. The effective number of alleles was 1.38 and 1.24 at species and population level, respectively. The Nei's diversity was 0.26 and 0.15 at species and population level, respectively. The Shannon's information index was 0.87 and 0.63 at species and population level, respectively. The genetic differentiation coefficient of populations was 0.51, and 12 populations were divided into three classes based on D = 0.20; the genetic diversities of different populations are correlated at different significance levels (P < 0.05) with environmental factors. Genetic differentiation existed among populations and the populations exhibited heteroplasmy.