Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 35
1.
Int J Mol Sci ; 24(19)2023 Sep 27.
Article En | MEDLINE | ID: mdl-37834043

Chlamydomonas reinhardtii (C. reinhardtii) is a single-cell green alga that can be easily genetically manipulated. With its favorable characteristics of rapid growth, low cost, non-toxicity, and the ability for post-translational protein modification, C. reinhardtii has emerged as an attractive option for the biosynthesis of various valuable products. To enhance the expression level of exogenous genes and overcome the silencing of foreign genes by C. reinhardtii, synthetic promoters such as the chimeric promoter AR have been constructed and evaluated. In this study, a synthetic promoter GA was constructed by hybridizing core fragments from the natural promoters of the acyl carrier protein gene (ACP2) and the glutamate dehydrogenase gene (GDH2). The GA promoter exhibited a significant increase (7 times) in expressing GUS, over the AR promoter as positive control. The GA promoter also displayed a strong responsiveness to blue light (BL), where the GUS expression was doubled compared to the white light (WL) condition. The ability of the GA promoter was further tested in the expression of another exogenous cadA gene, responsible for catalyzing the decarboxylation of lysine to produce cadaverine. The cadaverine yield driven by the GA promoter was increased by 1-2 times under WL and 2-3 times under BL as compared to the AR promoter. This study obtained, for the first time, a blue light-responsive GDH2 minimal fragment in C. reinhardtii, which delivered a doubling effect under BL when used alone or in hybrid. Together with the strong GA synthetic promoter, this study offered useful tools of synthetic biology to the algal biotechnology field.


Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Cadaverine/metabolism , Promoter Regions, Genetic , Biotechnology , Light
2.
Antibiotics (Basel) ; 11(6)2022 Jun 08.
Article En | MEDLINE | ID: mdl-35740186

An interdisciplinary approach to antimicrobial resistance (AMR) is essential to effectively address what is projected to soon become a public health disaster. Veterinary medicine accounts for a majority of antimicrobial use, and mainly in support of industrial food animal production (IFAP), which has significant exposure implications for human and nonhuman animals. Companion dogs live in close proximity to humans and share environmental exposures, including food sources. This study aimed to elucidate the AMR-gene presence in microorganisms recovered from urine from clinically healthy dogs to highlight public health considerations in the context of a species-spanning framework. Urine was collected through cystocentesis from 50 companion dogs in Southern California, and microbial DNA was analyzed using next-generation sequencing. Thirteen AMR genes in urine from 48% of the dogs {n=24} were detected. The most common AMR genes were aph(3')Ia, and ermB, which confer resistance to aminoglycosides and MLS (macrolides, lincosamides, streptogramins) antibiotics, respectively. Antibiotic-resistance profiles based on the AMR genes detected, and the intrinsic resistance profiles of bacterial species, were inferred in 24% of the samples {n=12} for 57 species, with most belonging to Streptococcus, Staphylococcus, and Corynebacterium genera. The presence of AMR genes that confer resistance to medically important antibiotics suggests that dogs may serve as reservoirs of clinically relevant resistomes, which is likely rooted in excessive IFAP antimicrobial use.

3.
PLoS One ; 17(1): e0262806, 2022.
Article En | MEDLINE | ID: mdl-35073343

Otitis media (OM) and externa (OE) are painful, recurrent ear conditions. As most otitis publications focus on the bacterial content of childhood ears, there remains a dearth of information regarding the adult ear microbiome including both bacteria and fungi. This study compares the outer ear microbiome of healthy adults to adults affected by OE and OM using both intergenic-transcribed-spacer (ITS) and 16S-rDNA sequencing. The adult ear core microbiome consists of the prokaryote Cutibacterium acnes and the eukaryotic Malassezia arunalokei, M. globosa, and M. restricta. The healthy ear mycobiome is dominated by Malassezia and can be divided into two groups, one dominated by M. arunalokei, the other by M. restricta. Microbiome diversity and biomass varied significantly between healthy and diseased ears, and analyses reveal the presence of a potential mutualistic, protective effect of Malassezia species and C. acnes. The healthy ear core microbiome includes the bacteria Staphylococcus capitis and S. capitis/caprae, while the diseased ear core is composed of known bacterial and fungal pathogens including Aspergillus sp., Candida sp., Pseudomonas aeruginosa, S. aureus, and Corynebacterium jeikeium. The data presented highlight the need for early detection of the cause of otitis to direct more appropriate, efficient treatments. This will improve patient outcomes and promote improved antimicrobial stewardship.


Ear/microbiology , Microbiota , Otitis Externa/microbiology , Otitis Media/microbiology , Adult , Aged , Aged, 80 and over , Case-Control Studies , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Humans , Male , Microbiota/genetics , Middle Aged , RNA, Ribosomal, 16S/genetics , Young Adult
4.
Animals (Basel) ; 11(12)2021 Dec 18.
Article En | MEDLINE | ID: mdl-34944364

Feline chronic gingivostomatitis (FCGS) is a severe immune-mediated inflammatory disease with concurrent oral dysbiosis (bacterial and fungal). Broad-spectrum antibiotics are used empirically in FCGS. Still, neither the occurrence of antimicrobial-resistant (AMR) bacteria nor potential patterns of co-occurrence between AMR genes and fungi have been documented in FCGS. This study explored the differential occurrence of AMR genes and the co-occurrence of AMR genes with oral fungal species. Briefly, 14 clinically healthy (CH) cats and 14 cats with FCGS were included. Using a sterile swab, oral tissue surfaces were sampled and submitted for 16S rRNA and ITS-2 next-generation DNA sequencing. Microbial DNA was analyzed using a proprietary curated database targeting AMR genes found in bacterial pathogens. The co-occurrence of AMR genes and fungi was tested using point biserial correlation. A total of 21 and 23 different AMR genes were detected in CH and FCGS cats, respectively. A comparison of AMR-gene frequencies between groups revealed statistically significant differences in the occurrence of genes conferring resistance to aminoglycosides (ant4Ib), beta-lactam (mecA), and macrolides (mphD and mphC). Two AMR genes (mecA and mphD) showed statistically significant co-occurrence with Malassezia restricta. In conclusion, resistance to clinically relevant antibiotics, such as beta-lactams and macrolides, is a significant cause for concern in the context of both feline and human medicine.

5.
Int J Mol Sci ; 22(15)2021 Jul 26.
Article En | MEDLINE | ID: mdl-34360743

Under natural environments, light quality and quantity are extremely varied. To respond and acclimate to such changes, plants have developed a multiplicity of molecular regulatory mechanisms. Non-photochemical quenching of chlorophyll fluorescence (NPQ) and thylakoid protein phosphorylation are two mechanisms that protect vascular plants. To clarify the role of thylakoid protein phosphorylation in energy-dependent quenching of chlorophyll fluorescence (qE) in rice plants, we used a direct Western blot assay after BN-PAGE to detect all phosphoproteins by P-Thr antibody as well as by P-Lhcb1 and P-Lhcb2 antibodies. Isolated thylakoids in either the dark- or the light-adapted state from wild type (WT) and PsbS-KO rice plants were used for this approach to detect light-dependent interactions between PsbS, PSII, and LHCII proteins. We observed that the bands corresponding to the phosphorylated Lhcb1 and Lhcb2 as well as the other phosphorylated proteins were enhanced in the PsbS-KO mutant after illumination. The qE relaxation became slower in WT plants after 10 min HL treatment, which correlated with Lhcb1 and Lhcb2 protein phosphorylation in the LHCII trimers under the same experimental conditions. Thus, we concluded that light-induced phosphorylation of PSII core and Lhcb1/Lhcb2 proteins is enhanced in rice PsbS-KO plants which might be due to more reactive-oxygen-species production in this mutant.


Chlorophyll/metabolism , Fluorescence , Light-Harvesting Protein Complexes/metabolism , Light , Oryza/metabolism , Thylakoids/metabolism , Chlorophyll/genetics , Light-Harvesting Protein Complexes/genetics , Oryza/genetics , Phosphorylation , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/metabolism , Thylakoids/genetics
6.
J Exp Bot ; 72(13): 4938-4948, 2021 06 22.
Article En | MEDLINE | ID: mdl-33939808

During low light- (LL) induced state transitions in dark-adapted rice (Oryza sativa) leaves, light-harvesting complex (LHC) II become phosphorylated and associate with PSI complexes to form LHCII-PSI-LHCI supercomplexes. When the leaves are subsequently transferred to high light (HL) conditions, phosphorylated LHCII complexes are no longer phosphorylated. Under the HL-induced transition in LHC phosphorylation status, we observed a new green band in the stacking gel of native green-PAGE, which was determined to be LHCII aggregates by immunoblotting and 77K chlorophyll fluorescence analysis. Knockout mutants of protein phosphatase 1 (PPH1) which dephosphorylates LHCII failed to form these LHCII aggregates. In addition, the ability to develop non-photochemical quenching in the PPH1 mutant under HL was less than for wild-type plants. As determined by immunoblotting analysis, LHCII proteins present in LHCII-PSI-LHCI supercomplexes included the Lhcb1 and Lhcb2 proteins. In this study, we provide evidence suggesting that LHCII in the LHCII-PSI-LHCI supercomplexes are dephosphorylated and subsequently form aggregates to dissipate excess light energy under HL conditions. We propose that this LHCII aggregation, involving LHCII L-trimers, is a newly observed photoprotective light-quenching process operating in the early stage of acclimation to HL in rice plants.


Oryza , Chlorophyll , Light-Harvesting Protein Complexes/metabolism , Oryza/genetics , Oryza/metabolism , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Thylakoids/metabolism
7.
Vet Microbiol ; 247: 108764, 2020 Aug.
Article En | MEDLINE | ID: mdl-32768216

This study analyzed the complex bacterial and fungal microbiota of healthy and clinically affected canine ear and skin samples. A total of 589 canine samples were included: 257 ear swab samples (128 healthy vs. 129 clinically affected) and 332 skin swab samples (172 healthy vs. 160 clinically affected) were analyzed using next-generation sequencing (NGS) to determine both relative and absolute abundances of bacteria and fungi present in the samples. This study highlighted the canine microbiota of clinically affected cases was characterized by an overall loss of microbial diversity, high microbial biomass, with overgrowth of certain members of the microbiota. The observed phenotype of these samples was best described by the combination of both relative and absolute microbial abundances. Compared to healthy samples, 78.3% of the clinically affected ear samples had microbial overgrowth; 69.8% bacterial overgrowth, 16.3% fungal overgrowth, and 7.0% had both bacterial and fungal overgrowth. The most important microbial taxa enriched in clinically affected ears were Malassezia pachydermatis, Staphylococcus pseudintermedius, Staphylococcus schleiferi, and a few anaerobic bacteria such as Finegoldia magna, Peptostreptococcus canis, and Porphyromonas cangingivalis. The anaerobic microbes identified here were previously not commonly recognized as pathogens in canine ear infections. Similar observations were found for skin samples, but yeasts and anaerobes were less abundant when compared to clinically affected cases. Results highlighted herein, signify the potential of NGS-based methods for the accurate quantification and identification of bacterial and fungal populations in diagnosing canine skin and ear infections, and highlight the limitations of traditional culture-based testing.


Ear/microbiology , Microbiota , Otitis/veterinary , Skin Diseases, Infectious/veterinary , Skin/microbiology , Animals , Bacteria/classification , Bacteria/pathogenicity , Dog Diseases/microbiology , Dogs , Fungi/classification , Fungi/pathogenicity , High-Throughput Nucleotide Sequencing , Otitis/microbiology , Skin Diseases, Infectious/microbiology
8.
PeerJ ; 8: e9265, 2020.
Article En | MEDLINE | ID: mdl-32655988

Ophiognomonia clavigignenti-juglandacearum (Oc-j) is a plant pathogenic fungus that causes canker and branch dieback diseases in the hardwood tree butternut, Juglans cinerea. Oc-j is a member of the order of Diaporthales, which includes many other plant pathogenic species, several of which also infect hardwood tree species. In this study, we sequenced the genome of Oc-j and achieved a high-quality assembly and delineated its phylogeny within the Diaporthales order using a genome-wide multi-gene approach. We also further examined multiple gene families that might be involved in plant pathogenicity and degradation of complex biomass, which are relevant to a pathogenic life-style in a tree host. We found that the Oc-j genome contains a greater number of genes in these gene families compared to other species in the Diaporthales. These gene families include secreted CAZymes, kinases, cytochrome P450, efflux pumps, and secondary metabolism gene clusters. The large numbers of these genes provide Oc-j with an arsenal to cope with the specific ecological niche as a pathogen of the butternut tree.

9.
Front Plant Sci ; 11: 505, 2020.
Article En | MEDLINE | ID: mdl-32499795

One of the major constraints limiting biomass production in autotrophs is the low thermodynamic efficiency of photosynthesis, ranging from 1 to 4%. Given the absorption spectrum of photosynthetic pigments and the spectral distribution of sunlight, photosynthetic efficiencies as high as 11% are possible. It is well-recognized that the greatest thermodynamic inefficiencies in photosynthesis are associated with light absorption and conversion of excited states into chemical energy. This is due to the fact that photosynthesis light saturates at one quarter full sunlight intensity in plants resulting in the dissipation of excess energy as heat, fluorescence and through the production of damaging reactive oxygen species. Recently, it has been demonstrated that it is possible to adjust the size of the light harvesting antenna over a broad range of optical cross sections through targeted reductions in chlorophyll b content, selectively resulting in reductions of the peripheral light harvesting antenna size, especially in the content of Lhcb3 and Lhcb6. We have examined the impact of alterations in light harvesting antenna size on the amplitude of photoprotective activity and the evolutionary fitness or seed production in Camelina grown at super-saturating and sub-saturating light intensities to gain an understanding of the driving forces that lead to the selection for light harvesting antenna sizes best fit for a range of light intensities. We demonstrate that plants having light harvesting antenna sizes engineered for the greatest photosynthetic efficiency also have the greatest capacity to mitigate high light stress through non-photochemical quenching and reduction of reactive oxygen associated damage. Under sub-saturating growth light intensities, we demonstrate that the optimal light harvesting antenna size for photosynthesis and seed production is larger than that for plants grown at super-saturating light intensities and is more similar to the antenna size of wild-type plants. These results suggest that the light harvesting antenna size of plants is designed to maximize fitness under low light conditions such as occurs in shaded environments and in light competition with other plants.

10.
Phytopathology ; 110(6): 1161-1173, 2020 Jun.
Article En | MEDLINE | ID: mdl-32040377

Xanthomonas vasicola pv. vasculorum is an emerging bacterial plant pathogen that causes bacterial leaf streak on corn. First described in South Africa in 1949, reports of this pathogen have greatly increased in the past years in South America and in the United States. The rapid spread of this disease in North and South America may be due to more favorable environmental conditions, susceptible hosts and/or genomic changes that favored the spread. To understand whether genetic mechanisms exist behind the recent spread of X. vasicola pv. vasculorum, we used comparative genomics to identify gene acquisitions in X. vasicola pv. vasculorum genomes from the United States and Argentina. We sequenced 41 genomes of X. vasicola pv. vasculorum and the related sorghum-infecting X. vasicola pv. holcicola and performed comparative analyses against all available X. vasicola genomes. Time-measured phylogenetic analyses showed that X. vasicola pv. vasculorum strains from the United States and Argentina are closely related and arose from two introductions to North and South America. Gene content comparisons identified clusters of genes enriched in corn X. vasicola pv. vasculorum that showed evidence of horizontal transfer including one cluster corresponding to a prophage found in all X. vasicola pv. vasculorum strains from the United States and Argentina as well as in X. vasicola pv. holcicola strains. In this work, we explore the genomes of an emerging phytopathogen population as a first step toward identifying genetic changes associated with the emergence. The acquisitions identified may contain virulence determinants or other factors associated with the spread of X. vasicola pv. vasculorum in North and South America and will be the subject of future work.


Xanthomonas , Argentina , Genomics , Phylogeny , Plant Diseases , South Africa , South America , United States , Zea mays
11.
Nanomedicine ; 24: 102148, 2020 02.
Article En | MEDLINE | ID: mdl-31887427

Infection resulting from carbapenem-resistant Klebsiella pneumoniae (CRKP) is an intractable clinical problem. Outer membrane vesicles (OMVs) from CRKP are believed to be potential vaccine candidates. However, their immune response remains elusive due to low structural stability and poor size homogeneity. In this study, hollow OMVs were reinforced internally by size-controlled BSA nanoparticles to obtain uniform and stable vaccines through hydrophobic interaction. The result showed that the BSA-OMV nanoparticles (BN-OMVs) were homogenous with a size around 100 nm and exhibited a core-shell structure. Remarkably, subcutaneous BN-OMVs vaccination mediated significantly higher CRKP specific antibody titers. The survival rate of the mice infected with a lethal dose of CRKP was increased significantly after BN-OMV immunization. The adoptive transfer experiment demonstrated that the protective effect of BN-OMVs was dependent on humoral and cellular immunity. This study demonstrated that the structure optimization improved the immune efficacy of OMVs for vaccine development against CRKP.


Carbapenems/chemistry , Carbapenems/pharmacology , Klebsiella pneumoniae/drug effects , Nanoparticles/chemistry , Albumins/chemistry , Animals , Bacterial Outer Membrane/metabolism , Cell Line , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Drug Resistance, Bacterial , Extracellular Vesicles/metabolism , Hydrodynamics , Mice , Microscopy, Electron, Transmission , RAW 264.7 Cells
12.
Adv Healthc Mater ; 9(1): e1901203, 2020 01.
Article En | MEDLINE | ID: mdl-31814301

Elevated low-density lipoprotein cholesterol (LDL-C) increases the risk of atherosclerotic cardiovascular disease. Peptide-based PCSK9 vaccines have shown a promising prospect of reducing LDL-C. In peptide vaccine (pVax) design, the peptide antigens need to conjugate with carrier protein (CP). However, CP incorporation can induce undesirable anti-CP antibodies, which sterically mask peptide epitopes from being recognized by specific B cells and impair subsequent therapeutically antibody production. This epitopic suppression has posed a barrier in clinical translation of conjugate vaccines all along. A model CP (keyhole limpet hemocyanin, KLH) is herein camouflaged with serum albumin (SA) into hybrid nanocarriers (SA@N), with PCSK9 peptide being anchored onto the surface to form nanovaccine (SA@NVax). Such camouflage of KLH via high "self" SA coverage is able to inhibit KLH from extracellular immune recognition and prevent detectable anti-KLH antibody production. Furthermore, the nanovaccine around 70 nm stabilized by intermolecular disulfide network is ideal for internalization and biodegradation by antigen presenting cells as well as better retention in draining lymph nodes and spleen. As expected, the SA@NVax efficiently primes higher anti-PCSK9 IgG antibody titer than PCSK9 pVax.


Antibodies/immunology , Cholesterol, LDL/blood , Dyslipidemias/therapy , Hemocyanins/immunology , Immunotherapy , Serum Albumin/immunology , Animals , Antibodies/blood , Antigens/chemistry , Antigens/immunology , Hemocyanins/chemistry , Lymph Nodes/immunology , Lymph Nodes/pathology , Mice , Mice, Inbred BALB C , Nanoparticles/chemistry , Peptides/chemistry , Peptides/immunology , Proprotein Convertase 9/chemistry , Proprotein Convertase 9/immunology , Serum Albumin/chemistry , Spleen/immunology , Spleen/pathology , Vaccines/immunology
13.
Plant Sci ; 286: 1-6, 2019 Sep.
Article En | MEDLINE | ID: mdl-31300135

The excessive and harmful light energy absorbed by the photosystem (PS) II of higher plants is dissipated as heat through a protective mechanism termed non-photochemical quenching (NPQ) of chlorophyll fluorescence. PsbS-knock-out (KO) mutants lack the trans-thylakoid proton gradient (ΔpH)-dependent part of NPQ. To elucidate the molecular mechanism of NPQ, we investigated its dependency on oxygen. The development of NPQ in wild-type (WT) rice under low-oxygen (LO) conditions was reduced to more than 50% of its original value. However, under high-oxygen (HO) conditions, the NPQ of both WT and PsbS-KO mutants recovered. Moreover, WT and PsbS-KO mutant leaves infiltrated with the ΔpH dissipating uncoupler nigericin showed increased NPQ values under HO conditions. The experiments using intact chloroplasts and protoplasts of Arabidopsis thaliana supported that the LO effects observed in rice leaves were not due to carbon dioxide deficiency. There was a noticeable 90% reduction in the half-time of P700 oxidation rate in LO-treated leaves compared with that of WT control leaves, but the HO treatment did not significantly change the half-time of P700 oxidation rate. Overall, the results obtained here indicate that the stroma of the PsbS-KO plants could be potentially under O2 deficiency. Because the functions of PsbS in rice leaves are likely to be similar to those in other higher plants, our findings offer novel insights into the role of oxygen in the development of NPQ.


Adaptation, Physiological/radiation effects , Arabidopsis/metabolism , Oryza/metabolism , Oxygen/metabolism , Photosystem II Protein Complex/metabolism , Arabidopsis/radiation effects , Chloroplasts/metabolism , Chloroplasts/radiation effects , Oryza/radiation effects , Photosystem II Protein Complex/genetics , Plant Leaves/genetics , Plant Leaves/physiology , Plant Leaves/radiation effects , Protoplasts/metabolism , Protoplasts/radiation effects
14.
J Ind Microbiol Biotechnol ; 46(7): 977-991, 2019 Jul.
Article En | MEDLINE | ID: mdl-30923972

Inhibition of spore germination offers an attractive and effective target for controlling fungal species involved in food spoilage. Mushroom alcohol (1-octen-3-ol) functions as a natural self-inhibitor of spore germination for many fungi and, therefore, provides a useful tool for probing the molecular events controlling the early stages of fungal growth. In Penicillium spp., the R and S enantiomers of 1-octen-3-ol delayed spore germination and sporulation in four species of Penicillium involved in soils of fruit and grains, but to different degrees. Because of its well-annotated genome, we used Penicillium chrysogenum to perform a comprehensive comparative transcriptomic analysis of cultures treated with the two enantiomers. Altogether, about 80% of the high-quality reads could be mapped to 11,396 genes in the reference genome. The top three active pathways were metabolic (978 transcripts), biosynthesis of secondary metabolites (420 transcripts), and microbial metabolism in diverse environments (318 transcripts). When compared to the control, treatment with (R)-(-)-1-octen-3-ol affected the transcription levels of 91 genes, while (S)-(+)-1-octen-3-ol affected only 41 genes. Most of the affected transcripts were annotated and predicted to be involved in transport, establishment of localization, and transmembrane transport. Alternative splicing and SNPs' analyses indicated that, compared to the control, the R enantiomer had greater effects on the gene expression pattern of Penicillium chrysogenum than the S enantiomer. A qRT-PCR analysis of 28 randomly selected differentially expressed genes confirmed the transcriptome data. The transcriptomic data have been deposited in NCBI SRA under the accession number SRX1065226.


Octanols/metabolism , Penicillium chrysogenum/metabolism , Gene Expression , Octanols/chemistry , Penicillium/drug effects , Penicillium chrysogenum/genetics , Stereoisomerism , Transcriptome
15.
PeerJ ; 7: e6170, 2019.
Article En | MEDLINE | ID: mdl-30643697

Blue mold is a postharvest rot of pomaceous fruits caused by Penicillium expansum and a number of other Penicillium species. The genome of the highly aggressive P. expansum strain R19 was re-sequenced and analyzed together with the genome of the less aggressive P. solitum strain RS1. Whole genome scale similarities and differences were examined. A phylogenetic analysis of P. expansum, P. solitum, and several closely related Penicillium species revealed that the two pathogens isolated from decayed apple with blue mold symptoms are not each other's closest relatives. Among a total of 10,560 and 10,672 protein coding sequences respectively, a comparative genomics analysis revealed 41 genes in P. expansum R19 and 43 genes in P. solitum RS1 that are unique to these two species. These genes may be associated with pome fruit-fungal interactions, subsequent decay processes, and mycotoxin accumulation. An intact patulin gene cluster consisting of 15 biosynthetic genes was identified in the patulin producing P. expansum strain R19, while only a remnant, seven-gene cluster was identified in the patulin-deficient P. solitum strain. However, P. solitum contained a large number of additional secondary metabolite gene clusters, indicating that this species has the potential capacity to produce an array of known as well as not-yet-identified products of possible toxicological or biotechnological interest.

16.
Front Plant Sci ; 10: 1726, 2019.
Article En | MEDLINE | ID: mdl-32038690

Ribulose-1,5-bisphosphate carboxylase/oxygenase, the key enzyme of photosynthetic carbon fixation, is able to accept both O2 and CO2 as substrates. When it fixes O2, it produces 2-phosphoglycolate, which is detoxified by photorespiration and recycled to the Calvin-Benson-Bassham cycle. To complete photorespiration, metabolite transport across three organelles, chloroplasts, peroxisomes, and mitochondria, is necessary through transmembrane transporters. In rice (Oryza sativa) little is known about photorespiratory transmembrane transporters. Here, we identified the rice plastidic glycolate/glycerate translocator 1 (OsPLGG1), a homolog of Arabidopsis PLGG1. OsPLGG1 mutant lines, osplgg1-1, osplgg1-2, and osplgg1-3, showed a growth retardation phenotype, such as pale green leaf, reduced tiller number, and reduced seed grain weight as well as reduced photosynthetic carbon reduction rate due to low activities of photosystem I and II. The plant growth retardation in osplgg1 mutants was rescued under high CO2 condition. Subcellular localization of OsPLGG1-GFP fusion protein, along with its predicted N-terminal transmembrane domain, confirmed that OsPLGG1 is a chloroplast transmembrane protein. Metabolite analysis indicated significant accumulation of photorespiratory metabolites, especially glycolate and glycerate, which have been shown to be transported by the Arabidopsis PLGG1, and changes for a number of metabolites which are not intermediates of photorespiration in the mutants. These results suggest that OsPLGG1 is the functional plastidic glycolate/glycerate transporter, which is necessary for photorespiration and growth in rice.

17.
J Invest Dermatol ; 138(5): 1137-1145, 2018 05.
Article En | MEDLINE | ID: mdl-29246799

Skin provides the first defense against pathogenic micro-organisms and is also colonized by a diverse microbiota. Phylogenetic analysis of whole skin microbiome at different skin sites in health and disease has generated important insights on possible microbial involvement in modulating skin health. However, functional roles of the skin microbial community remain unclear. The most common sebaceous skin commensal yeasts are the basidiomycetes, Malassezia. Here, we characterized the dominant secreted Malassezia globosa protease in culture and subsequently named it Malassezia globosa Secreted Aspartyl Protease 1 (MgSAP1). We defined recombinant MgSAP1's substrate cleavage profile using an unbiased, mass-spectrometry-based technique. We show that this enzyme is physiologically relevant as mgsap1 expression was detected on at least one facial skin site of 17 healthy human volunteers. In addition, we demonstrated that this protease rapidly hydrolyzes Staphylococcus aureus protein A, an important S. aureus virulence factor involved in immune evasion and biofilm formation. We further observed that MgSAP1 has anti-biofilm properties against S. aureus. Taken together, our study defines a role for the skin fungus Malassezia in inter-kingdom interactions and suggests that this fungus and the enzymes it produces may be beneficial for skin health.


Biofilms , Malassezia/enzymology , Peptide Hydrolases/physiology , Skin/microbiology , Staphylococcus aureus/physiology , Aspartic Acid Proteases/physiology , Humans
18.
Genome Biol Evol ; 9(12): 3312-3327, 2017 12 01.
Article En | MEDLINE | ID: mdl-29186370

Geosmithia morbida is an emerging fungal pathogen which serves as a model for examining the evolutionary processes behind pathogenicity because it is one of two known pathogens within a genus of mostly saprophytic, beetle-associated, fungi. This pathogen causes thousand cankers disease in black walnut trees and is vectored into the host via the walnut twig beetle. Geosmithia morbida was first detected in western United States and currently threatens the timber industry concentrated in eastern United States. We sequenced the genomes of G. morbida in a previous study and two nonpathogenic Geosmithia species in this work and compared these species to other fungal pathogens and nonpathogens to identify genes under positive selection in G. morbida that may be associated with pathogenicity. Geosmithia morbida possesses one of the smallest genomes among the fungal species observed in this study, and one of the smallest fungal pathogen genomes to date. The enzymatic profile in this pathogen is very similar to its nonpathogenic relatives. Our findings indicate that genome reduction or retention of a smaller genome may be an important adaptative force during the evolution of a specialized lifestyle in fungal species that occupy a specificniche, such as beetle vectored tree pathogens. We also present potential genes under selection in G. morbida that could be important for adaptation to a pathogenic lifestyle.


Coleoptera/microbiology , Genome, Fungal , Host-Pathogen Interactions , Hypocreales/genetics , Plant Diseases/microbiology , Animals , Genomics , Hypocreales/classification , Hypocreales/pathogenicity , Insect Proteins/genetics , Juglans/microbiology , Phylogeny , Reference Standards , Sequence Analysis, DNA
20.
Nucleic Acids Res ; 45(5): 2629-2643, 2017 03 17.
Article En | MEDLINE | ID: mdl-28100699

Complete and accurate genome assembly and annotation is a crucial foundation for comparative and functional genomics. Despite this, few complete eukaryotic genomes are available, and genome annotation remains a major challenge. Here, we present a complete genome assembly of the skin commensal yeast Malassezia sympodialis and demonstrate how proteogenomics can substantially improve gene annotation. Through long-read DNA sequencing, we obtained a gap-free genome assembly for M. sympodialis (ATCC 42132), comprising eight nuclear and one mitochondrial chromosome. We also sequenced and assembled four M. sympodialis clinical isolates, and showed their value for understanding Malassezia reproduction by confirming four alternative allele combinations at the two mating-type loci. Importantly, we demonstrated how proteomics data could be readily integrated with transcriptomics data in standard annotation tools. This increased the number of annotated protein-coding genes by 14% (from 3612 to 4113), compared to using transcriptomics evidence alone. Manual curation further increased the number of protein-coding genes by 9% (to 4493). All of these genes have RNA-seq evidence and 87% were confirmed by proteomics. The M. sympodialis genome assembly and annotation presented here is at a quality yet achieved only for a few eukaryotic organisms, and constitutes an important reference for future host-microbe interaction studies.


Fungal Proteins/genetics , Genome, Fungal , Malassezia/genetics , Molecular Sequence Annotation/methods , Proteogenomics/methods , Genes, Fungal , Genome, Mitochondrial , Peptides/genetics , Protein Domains , Sequence Analysis, RNA
...