Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 399: 130558, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38460557

RESUMEN

Nitrite as an important substrate for Anammox can be provided by partial denitrification (PD). In this study, endogenous partial denitrification (EdPD) and exogenous partial denitrification (ExPD) sludge were domesticated and their nitrite transformation rate reached 74.4% and 83.4%, respectively. The impact of four carbon/nitrogen (C/N) ratios (1.5, 3.0, 5.0 and 6.0) on nitrous oxide (N2O) emission and denitrification functional genes expression in both PD systems were investigated. Results showed that elevated C/N ratios enhanced most denitrification genes expression, but in EdPD, high nitrite levels suppressed nosZ genes expression (from 9.4% to 1.4%), leading to increased N2O emission (0 to 3.4%). EdPD also exhibited lower electron transfer system activity, resulting in slower nitrogen oxide conversion efficiency and more stable nitrite accumulation compared to ExPD. These findings offer insights for optimizing PD systems under varying water quality conditions.


Asunto(s)
Nitritos , Óxido Nitroso , Nitritos/metabolismo , Óxido Nitroso/metabolismo , Desnitrificación , Transporte de Electrón , Nitrógeno , Carbono , Aguas del Alcantarillado , Reactores Biológicos
2.
Water Res ; 246: 120742, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37857010

RESUMEN

Partial nitrification (PN) and high glycogen accumulating metabolism (GAM) activity are the basis for efficient nitrogen (N) and phosphorus (P) removal in simultaneous nitrification endogenous denitrification and phosphorus removal (SNDPR) systems. However, achieving these processes in practical operations is challenging. This study proposes that light irradiation is a novel strategy to enhance the nutrient removal performance of the SNDPR system with low carbon to nitrogen ratios (C/N of 3.3-4.1) domestic wastewater. Light energy densities (Es) of 55-135 J/g VSS were found to promote the activity of ammonia-oxidizing bacteria (AOB) and GAM, while inhibiting the activity of nitrite-oxidizing bacteria (NOB) and polyphosphate accumulating metabolism (PAM). Long-term exposure to different light patterns at Es of 55-135 J/g VSS revealed that continuous light rapidly achieved PN by inhibiting NOB activity and promoted the growth of glycogen accumulating organisms (GAOs), allowing the removal of above 82 % N and below 80 % P. Intermittent light maintained stable PN by inhibiting the activity and growth of NOB and promoted the growth of polyphosphate accumulating organisms (PAOs) with high GAM activity (Accmulibacer IIC-ii and IIC-iii), allowing the removal of above 82 % N and 95 % P. Flow cytometry and enzyme activity assays showed that light promoted GAM-related enzyme activity and the metabolic activity of partial Accmulibacer II over other endogenous denitrifying bacteria, while inhibiting NOB translation activity. These findings provide a new approach for enhancing nutrient removal, especially for achieving PN and promoting GAM activity, in SNDPR systems treating low C/N ratio domestic wastewater using light irradiation.


Asunto(s)
Nitrificación , Aguas Residuales , Desnitrificación , Fósforo/metabolismo , Eliminación de Residuos Líquidos , Reactores Biológicos/microbiología , Nitrógeno/metabolismo , Bacterias/metabolismo , Glucógeno/metabolismo , Nitritos/metabolismo , Polifosfatos/metabolismo , Aguas del Alcantarillado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA