Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Bioengineering (Basel) ; 11(5)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38790288

An intensive care unit (ICU) is a special ward in the hospital for patients who require intensive care. It is equipped with many instruments monitoring patients' vital signs and supported by the medical staff. However, continuous monitoring demands a massive workload of medical care. To ease the burden, we aim to develop an automatic detection model to monitor when brain anomalies occur. In this study, we focus on electroencephalography (EEG), which monitors the brain electroactivity of patients continuously. It is mainly for the diagnosis of brain malfunction. We propose the gated-recurrent-unit-based (GRU-based) model for detecting brain anomalies; it predicts whether the spike or sharp wave happens within a short time window. Based on the banana montage setting, the proposed model exploits characteristics of multiple channels simultaneously to detect anomalies. It is trained, validated, and tested on separated EEG data and achieves more than 90% testing performance on sensitivity, specificity, and balanced accuracy. The proposed anomaly detection model detects the existence of a spike or sharp wave precisely; it will notify the ICU medical staff, who can provide immediate follow-up treatment. Consequently, it can reduce the medical workload in the ICU significantly.

2.
Int J Biomed Imaging ; 2024: 6114826, 2024.
Article En | MEDLINE | ID: mdl-38706878

A challenge in accurately identifying and classifying left ventricular hypertrophy (LVH) is distinguishing it from hypertrophic cardiomyopathy (HCM) and Fabry disease. The reliance on imaging techniques often requires the expertise of multiple specialists, including cardiologists, radiologists, and geneticists. This variability in the interpretation and classification of LVH leads to inconsistent diagnoses. LVH, HCM, and Fabry cardiomyopathy can be differentiated using T1 mapping on cardiac magnetic resonance imaging (MRI). However, differentiation between HCM and Fabry cardiomyopathy using echocardiography or MRI cine images is challenging for cardiologists. Our proposed system named the MRI short-axis view left ventricular hypertrophy classifier (MSLVHC) is a high-accuracy standardized imaging classification model developed using AI and trained on MRI short-axis (SAX) view cine images to distinguish between HCM and Fabry disease. The model achieved impressive performance, with an F1-score of 0.846, an accuracy of 0.909, and an AUC of 0.914 when tested on the Taipei Veterans General Hospital (TVGH) dataset. Additionally, a single-blinding study and external testing using data from the Taichung Veterans General Hospital (TCVGH) demonstrated the reliability and effectiveness of the model, achieving an F1-score of 0.727, an accuracy of 0.806, and an AUC of 0.918, demonstrating the model's reliability and usefulness. This AI model holds promise as a valuable tool for assisting specialists in diagnosing LVH diseases.

3.
Bioengineering (Basel) ; 11(4)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38671820

BACKGROUND AND OBJECTIVE: Local advanced rectal cancer (LARC) poses significant treatment challenges due to its location and high recurrence rates. Accurate early detection is vital for treatment planning. With magnetic resonance imaging (MRI) being resource-intensive, this study explores using artificial intelligence (AI) to interpret computed tomography (CT) scans as an alternative, providing a quicker, more accessible diagnostic tool for LARC. METHODS: In this retrospective study, CT images of 1070 T3-4 rectal cancer patients from 2010 to 2022 were analyzed. AI models, trained on 739 cases, were validated using two test sets of 134 and 197 cases. By utilizing techniques such as nonlocal mean filtering, dynamic histogram equalization, and the EfficientNetB0 algorithm, we identified images featuring characteristics of a positive circumferential resection margin (CRM) for the diagnosis of locally advanced rectal cancer (LARC). Importantly, this study employs an innovative approach by using both hard and soft voting systems in the second stage to ascertain the LARC status of cases, thus emphasizing the novelty of the soft voting system for improved case identification accuracy. The local recurrence rates and overall survival of the cases predicted by our model were assessed to underscore its clinical value. RESULTS: The AI model exhibited high accuracy in identifying CRM-positive images, achieving an area under the curve (AUC) of 0.89 in the first test set and 0.86 in the second. In a patient-based analysis, the model reached AUCs of 0.84 and 0.79 using a hard voting system. Employing a soft voting system, the model attained AUCs of 0.93 and 0.88, respectively. Notably, AI-identified LARC cases exhibited a significantly higher five-year local recurrence rate and displayed a trend towards increased mortality across various thresholds. Furthermore, the model's capability to predict adverse clinical outcomes was superior to those of traditional assessments. CONCLUSION: AI can precisely identify CRM-positive LARC cases from CT images, signaling an increased local recurrence and mortality rate. Our study presents a swifter and more reliable method for detecting LARC compared to traditional CT or MRI techniques.

4.
Comput Methods Programs Biomed ; 242: 107845, 2023 Dec.
Article En | MEDLINE | ID: mdl-37852147

BACKGROUND: To develop deep learning models for medical diagnosis, it is important to collect more medical data from several medical institutions. Due to the regulations for privacy concerns, it is infeasible to collect data from various medical institutions to one institution for centralized learning. Federated Learning (FL) provides a feasible approach to jointly train the deep learning model with data stored in various medical institutions instead of collected together. However, the resulting FL models could be biased towards institutions with larger training datasets. METHODOLOGY: In this study, we propose the applicable method of Dynamically Synthetic Images for Federated Learning (DSIFL) that aims to integrate the information of local institutions with heterogeneous types of data. The main technique of DSIFL is to develop a synthetic method that can dynamically adjust the number of synthetic images similar to local data that are misclassified by the current model. The resulting global model can handle the diversity in heterogeneous types of data collected in local medical institutions by including the training of synthetic images similar to misclassified cases in local collections. RESULTS: In model performance evaluation metrics, we focus on the accuracy of each client's dataset. Finally, the accuracy of the model of DSIFL in the experiments can achieve the higher accuracy of the FL approach. CONCLUSION: In this study, we propose the framework of DSIFL that achieves improvements over the conventional FL approach. We conduct empirical studies with two kinds of medical images. We compare the performance by variants of FL vs. DSIFL approaches. The performance by individual training is used as the baseline, whereas the performance by centralized learning is used as the target for the comparison studies. The empirical findings suggest that the DSIFL has improved performance over the FL via the technique of dynamically synthetic images in training.


Benchmarking , Privacy , Humans , Empirical Research
...