Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuropharmacology ; 238: 109655, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37423482

RESUMEN

Uridine 5'-diphosphoglucose (UDP-G) as a preferential agonist, but also other UDP-sugars, such as UDP galactose, function as extracellular signaling molecules under conditions of cell injury and apoptosis. Consequently, UDP-G is regarded to function as a damage-associated molecular pattern (DAMP), regulating immune responses. UDP-G promotes neutrophil recruitment, leading to the release of pro-inflammatory chemokines. As a potent endogenous agonist with the highest affinity for the P2Y14 receptor (R), it accomplishes an exclusive relationship between P2Y14Rs in regulating inflammation via cyclic adenosine monophosphate (cAMP), nod-like receptor protein 3 (NLRP3) inflammasome, mitogen-activated protein kinases (MAPKs), and signal transducer and activator of transcription 1 (STAT1) pathways. In this review, we initially present a brief introduction into the expression and function of P2Y14Rs in combination with UDP-G. Subsequently, we summarize emerging roles of UDP-G/P2Y14R signaling pathways that modulate inflammatory responses in diverse systems, and discuss the underlying mechanisms of P2Y14R activation in inflammation-related diseases. Moreover, we also refer to the applications as well as effects of novel agonists/antagonists of P2Y14Rs in inflammatory conditions. In conclusion, due to the role of the P2Y14R in the immune system and inflammatory pathways, it may represent a novel target for anti-inflammatory therapy.


Asunto(s)
Receptores Purinérgicos P2 , Humanos , Receptores Purinérgicos P2/metabolismo , Uridina Difosfato Glucosa/metabolismo , Uridina Difosfato Glucosa/farmacología , Azúcares de Uridina Difosfato/farmacología , Inflamación/tratamiento farmacológico , Glucosa
2.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36982618

RESUMEN

Ecto-5'-nucleotidase (CD73) plays a strategic role in calibrating the magnitude and chemical nature of purinergic signals that are delivered to immune cells. Its primary function is to convert extracellular ATP to adenosine in concert with ectonucleoside triphosphate diphosphohydrolase-1 (CD39) in normal tissues to limit an excessive immune response in many pathophysiological events, such as lung injury induced by a variety of contributing factors. Multiple lines of evidence suggest that the location of CD73, in proximity to adenosine receptor subtypes, indirectly determines its positive or negative effect in a variety of organs and tissues and that its action is affected by the transfer of nucleoside to subtype-specific adenosine receptors. Nonetheless, the bidirectional nature of CD73 as an emerging immune checkpoint in the pathogenesis of lung injury is still unknown. In this review, we explore the relationship between CD73 and the onset and progression of lung injury, highlighting the potential value of this molecule as a drug target for the treatment of pulmonary disease.


Asunto(s)
Enfermedades Pulmonares , Lesión Pulmonar , Humanos , 5'-Nucleotidasa , Adenosina , Adenosina Trifosfato
3.
J Ethnopharmacol ; 294: 115316, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35513214

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Many studies have demonstrated the powerful neuroprotection abilities of multiple traditional Chinese medicines (TCMs) against NLRP3 inflammasome-mediated ischemic cerebral injury. These TCMs may be in the form of TCM prescriptions, Chinese herbal medicines and their extracts, and TCM monomers. AIM OF THE STUDY: This review aimed to analyze and summarize the existing knowledge on the assembly and activation of the NLRP3 inflammasome and its role in the pathogenesis of ischemic stroke (IS). We also summarized the mechanism of action of the various TCMs on the NLRP3 inflammasome, which may provide new insights for the management of IS. MATERIALS AND METHODS: We reviewed recently published articles by setting the keywords "NLRP3 inflammasome" and "traditional Chinese medicines" along with "ischemic stroke"; "NLRP3 inflammasome" and "ischemic stroke" along with "natural products" and so on in Pubmed and GeenMedical. RESULTS: According to recent studies, 16 TCM prescriptions (officially authorized products and clinically effective TCM prescriptions), 7 Chinese herbal extracts, and 29 TCM monomers show protective effects against IS through anti-inflammatory, anti-oxidative stress, anti-apoptotic, and anti-mitochondrial autophagy effects. CONCLUSIONS: In this review, we analyzed studies on the involvement of NLRP3 in IS therapy. Further, we comprehensively and systematically summarized the current knowledge to provide a reference for the further application of TCMs in the treatment of IS.


Asunto(s)
Medicamentos Herbarios Chinos , Accidente Cerebrovascular Isquémico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Inflamasomas , Medicina Tradicional China , Proteína con Dominio Pirina 3 de la Familia NLR
4.
Food Chem ; 373(Pt A): 131380, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-34710697

RESUMEN

As a well-recognized dietary and medicinal plant, Taraxacum mongolicum Hand.-Mazz (TMHM) has been used for making wines, candies, energy drinks, and other functional foods. The TMHM contains a diverse range of active phytoconstituents, including flavonoids, triterpenoids, phenolic acids, sesquiterpene lactones, pigments, coumarins and sterols. Recent pharmacological evidence has revealed multiple biological effects of TMHM, including anti-inflammatory, antioxidant, antibacterial, and gastric-protective effects, which contribute to the ameliorative effects of TMHM on inflammation-associated diseases, constipation, gastric disorders, empyrosis, hyperlipidemia, and swollen carbuncles. Although recent advances have highlighted the potential of TMHM to be applied in the clinical practice, food, and nutraceutical industry, the mechanistic understanding and systematic information on TMHM are still scarce. Here, in this timeline review, we have attempted to compile literary documents on pharmacological potential of TMHM concerning its chemical composition, biological activities, toxicity, and pharmacokinetics to promote further researches on clinical and therapeutic potential of TMHM and its food/nutraceutical applications.


Asunto(s)
Plantas Medicinales , Taraxacum , Antiinflamatorios , Flavonoides , Fitoquímicos , Extractos Vegetales
5.
Small ; 16(46): e2004240, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33107142

RESUMEN

Activation of the phagocytosis of macrophages to tumor cells is an attractive strategy for cancer immunotherapy, but the effectiveness is limited by the fact that many tumor cells express an increased level of anti-phagocytic signals (e.g., CD47 molecules) on their surface. To promote phagocytosis of macrophages, a pro-phagocytic nanoparticle (SNPACALR&aCD47 ) that concurrently carries CD47 antibody (aCD47) and a pro-phagocytic molecule calreticulin (CALR) is constructed to simultaneously modulate the phagocytic signals of macrophages. SNPACALR&aCD47 can achieve targeted delivery to tumor cells by specifically binding to the cell-surface CD47 and block the CD47-SIRPα pathway to inhibit the "don't eat me" signal. Tumor cell-targeted delivery increases the exposure of recombinant CALR on the cell surface and stimulates an "eat me" signal. Simultaneous modulation of the two signals enhances the phagocytosis of 4T1 tumor cells by macrophages, which leads to significantly improved anti-tumor efficacy in vivo. The findings demonstrate that the concurrent blockade of anti-phagocytic signals and activation of pro-phagocytic signals can be effective in macrophage-mediated cancer immunotherapy.


Asunto(s)
Nanopartículas , Neoplasias , Antígenos de Diferenciación , Humanos , Inmunoterapia , Macrófagos , Neoplasias/terapia , Fagocitosis , Receptores Inmunológicos
6.
Phytomedicine ; 68: 153148, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32028185

RESUMEN

BACKGROUND: Aloe-emodin (AE) is among the primary bioactive anthraquinones present in traditional Chinese medicinal plants such as Rheum palmatum L. Multidrug resistance protein 2 (ABCC2/ MRP2) is an important efflux transporter of substances associated with cellular oxidative stress. However, the effects of traditional Chinese medicine on this protein remain unclear. PURPOSE: The aim of this research is to study the role of ABCC2 in AE-induced hepatotoxicity. METHODS: The expression of ABCC2 protein and mRNA levels were analyzed by Western-Blotting and qRT-PCR, respectively. The intracellular oxidative stress caused by AE was evaluated by quantifying the levels of intracellular reactive oxygen species, malondialdehyde, glutathione reduced and oxidized glutathione. The levels of adenosine triphosphate, mitochondrial membrane potential and mitochondrial DNA were explored to evaluate the effects of AE on mitochondrial function. The effects of AE on cell apoptosis and cell cycle were detected by flow cytometry. To further clarify the key role of ABCC2 in AE induced cytotoxicity, we used pCI-neo-ABCC2 plasmid to over express ABCC2 protein, and small interfering RNA was used to knockdown ABCC2 in HepG2 cells. Additionally, we investigated the impact of AE on ABCC2 degradation pathway and the hepatotoxic effects of AE in mice. RESULTS: AE was found to inhibit ABCC2 transport activity, downregulate ABCC2 expression and altered intracellular redox balance. Induction of oxidative stress resulted in depletion of intracellular glutathione reduced, mitochondria dysfunction and activation of apoptosis. ABCC2 overexpression significantly reduced AE-induced intracellular oxidative stress and cell death, which was enhanced by ABCC2 knockdown. Furthermore, AE was observed to promote ABCC2 degradation through induction of autophagy and hepatotoxicity was induced in mice by promoting ABCC2 degradation. CONCLUSIONS: The inhibition of ABCC2 is a novel effect of AE that triggers oxidative stress and apoptosis. These findings are helpful in understanding the toxicological effects of AE-containing medicinal plants.


Asunto(s)
Antraquinonas/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Femenino , Células Hep G2 , Humanos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
7.
Biomater Sci ; 8(5): 1290-1297, 2020 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-31899467

RESUMEN

Primary central nervous system lymphoma (PCNSL) is a rare brain tumor. Its therapeutic efficacy is much lower than that of traditional lymphoma, largely due to the presence of the blood-brain barrier (BBB), which hinders the effective drug delivery and deposition on the disease site. Angiopep-2 (ANG) can target low-density lipoprotein receptor-related protein (LRP) on the surface of brain capillary endothelial cells (BCECs) and exhibits high BBB transport capability. In this study, we designed an ANG conjugated poly(ethylene glycol)-b-poly(ε-caprolactone) (PEG-b-PCL) (APP) nanoparticle to deliver doxorubicin (DOX) for the treatment of PCNSL. Our data indicated that the targeted APP nanoparticles showed significantly increased cellular uptake by BCECs compared with the control nanoparticles. In the intracranial SU-DHL-2-LUC lymphoma xenograft mice model, APP enhanced drug deposition in tumor tissues, and DOX-loaded APP (APP@DOX) exhibited a better therapeutic effect than free DOX and nontargeted PP@DOX, which significantly prolonged the survival time of mice.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Doxorrubicina/farmacología , Linfoma/tratamiento farmacológico , Nanopartículas/química , Péptidos/química , Animales , Antibióticos Antineoplásicos/síntesis química , Antibióticos Antineoplásicos/química , Barrera Hematoencefálica/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias del Sistema Nervioso Central/metabolismo , Neoplasias del Sistema Nervioso Central/patología , Modelos Animales de Enfermedad , Doxorrubicina/síntesis química , Doxorrubicina/química , Portadores de Fármacos/química , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Lactonas/química , Linfoma/metabolismo , Linfoma/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Polietilenglicoles/química
8.
Front Pharmacol ; 9: 793, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30072902

RESUMEN

Monitoring of the inhibition of TNF-α, IL-6, iNOS, and NO is used to effectively evaluate anti-inflammatory drugs. Baicalein was found to have good anti-inflammatory activities, but its detailed cellular pharmacodynamic events have not been expatiated by any other study. The inflammatory mediators, including TNF-α, IL-6, iNOS, and NO production in RAW264.7 macrophage induced by LPS, were measured. It was found that these data showed a sequential pattern on time and based on these points a cellular pharmacodynamic model was developed and tested. TNF-α and IL-6 were quantified by ELISA, NO was detected by Griess and iNOS expression was measured by Western blot. The pharmacodynamic model was developed using a NLME modeling program Monolix® 2016R1.The results showed that baicalein quickly suppressed release of TNF-α in a concentration-dependent manner, and consequently causing the diminution of IL-6 and iNOS/NO. The pharmacodynamic model simulation successfully described the experimental data, supporting the hypothesis that IL-6 and iNOS /NO release after LPS stimulation is mediated by TNF-α rather than LPS directly. The pharmacodynamic model allowed a well understanding of the cellular pharmacodynamic mechanism of baicalein in the treatment of inflammatory diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA