Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEMS Microbiol Lett ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118365

RESUMEN

The ability to sense and respond effectively to acidic stress is important for microorganisms to survive and proliferate in fluctuating environments. As specific metabolic activities can serve to buffer the cytoplasmic pH, microorganisms re-wire their metabolism to favour these reactions and thereby mitigate acid stress. The orally-acquired pathogen Listeria monocytogenes exploits alternative metabolic activities to overcome the acidic stress encountered in the human stomach or food products. In this minireview, we discuss the metabolic processes in L. monocytogenes that mitigate acid stress, with an emphasis on the proton-depleting reactions including glutamate decarboxylation, arginine/agmatine deimination, and fermentative acetoin production. We also summarize the recent findings on regulatory mechanisms that control the expression of genes that are responsible for these metabolic activities, including the general stress response regulator SigB, arginine repressor ArgR, and the recently discovered RofA-like transcriptional regulatory GadR. We further discuss the importance of this metabolic reprogramming in the context of food products and within the host. Finally, we highlight some outstanding challenges in the field including an understanding of acid-sensing mechanisms, the role of intra-species heterogeneity in acid resistance, and how a fundamental understanding of acid stress response can be exploited for food formulation to improve food safety and reduce food waste.

2.
Anal Chim Acta ; 1314: 342669, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38876510

RESUMEN

BACKGROUND: The evaluation of particle-bound mercury (PBM) exposure is a crucial aspect of assessing the global cycle of mercury (Hg) and its adverse effects on human health and ecosystems. Nevertheless, the precise and reliable measurement of PBM remains a formidable task because of the costly and cumbersome equipment required, as well as the inadequate sensitivities exhibited by current analytical techniques. In this study, we provided a unique and straightforward approach utilising filter fiber-assisted matrix solid-phase dispersion (FF-MSPD) in conjunction with single-drop solution electrode discharge-induced cold vapor generation atomic fluorescence spectrometry (SD-SEGD-CVG-AFS) for the precise quantification of PBM. The PBM contained in a small filter was efficiently extracted with 200 µL of eluent (0.2 % L-cysteine and 4 % HCOOH) by FF-MSPD and subsequently converted to Hg0 using SD-SEGD-CVG, before being subjected to examination using AFS. RESULTS: The resulted limit of detection (LOD, 3σ) was 0.17 pg m-3, obtained with a sample volume of 12 m3, which was much higher than that of the techniques published in the literatures. The aforementioned technique was effectively utilised for the detection of mercury in 19 samples of PM2.5 and PM10 which were collected over a span of several months. SIGNIFFCANCE: Contrast to conventional methods, the proposed method offers a range of distinct advantages, including simplified operation, absence of memory effects, enhanced sensitivity, substantial reduction in reagent usage, and decreased secondary pollution. These advantages are particularly valuable for advancing research on the fate, transport, and exposure routes of environmental mercury.

3.
Waste Manag ; 183: 260-270, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38776828

RESUMEN

The landfill is one of the most important sources of microplastics (MPs). The pretreatment method is a precondition of microplastics study for the presence of complex substances in landfills. Therefore, it is essential to examine the impact of different pretreatment methods on the microplastics detection. A literature review and a comparison experiment on digestion solutions were performed to establish a comprehensive identification method for MPs in landfills. When exposed to of 30 % H2O2, minimal mass reduction of PE, PP and PET were 4.00 %, 3.00 % and 3.00 % respectively, and the least surface damage was observed in MPs, while exhibiting the most optimal peak value for infrared spectral characteristics. It is demonstrated that the effect of 30 % H2O2 dissolution was superior compared to 10 % KOH and 65 % HNO3. The method was subsequently utilized to investigate the distribution of MPs in a landfill. The dominant MPs were polyethylene (PE, 18.56-23.91 %), polyethylene terephthalate (PET, 8.80-18.66 %), polystyrene (PS, 10.31-18.09 %), and polypropylene (PP, 11.60-14.91 %). The comprehensive identification method of "NaCl density separation + 30 % H2O2 digestion + NaI density separation + sampling microscope + Mirco-FTIR" is suitable for the detection of MPs in landfills.


Asunto(s)
Residuos Sólidos , Instalaciones de Eliminación de Residuos , Eliminación de Residuos/métodos , Polietileno/análisis , Tereftalatos Polietilenos/análisis , Poliestirenos/análisis , Polipropilenos/análisis
4.
mBio ; : e0171623, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37882515

RESUMEN

Stomach acid provides a significant innate barrier to the entry of the food-borne pathogen Listeria monocytogenes into the human gastrointestinal tract. A key determinant of acid resistance in this bacterium is the conserved glutamate decarboxylase system, GadD2 (encoded by the gadT2D2 operon), which helps to maintain the intracellular pH during exposure to gastric acid. In this study, we identified a premature stop codon in a gene located immediately downstream of the gadT2D2 operon that was highly linked to an acid-sensitive phenotype. When this open reading frame was restored through homologous recombination, an acid-resistant phenotype was restored. Through a series of genetic, transcriptomic, and survival experiments, we established that this gene, which we designated gadR, encodes a transcriptional regulator of the gadT2D2 operon. GadR belongs to the RofA family of regulators, primarily found in streptococci, where they are involved in regulating virulence. The data further showed that gadR plays a critical role in the development of acid resistance in response to mild acid exposure, a response that is known as the adaptive acid tolerance response (ATR). A deletion analysis of the gadT2D2 promoter region identified two 18-bp palindromic sequences that are required for the GadR-mediated induction of gadT2D2, suggesting that they act as binding sites for GadR. Overall, this study uncovers a new RofA-like regulator of acid resistance in L. monocytogenes, which plays a significant role in both growth phase-dependent acid resistance and ATR and accounts for previously observed strain-to-strain differences in survival at low pH.IMPORTANCEThe ability to survive the acidic conditions found in the stomach is crucial for the food-borne pathogen Listeria monocytogenes to gain access to the mammalian gastrointestinal tract. Little is currently known about how acid resistance is regulated in this pathogen and why this trait is highly variable between strains. Here, we used comparative genomics to identify a novel RofA-family transcriptional regulator, GadR, that controls the development of acid resistance. The RofA family of regulators was previously found only in a small group of bacterial pathogens, including streptococci, where they regulate virulence properties. We show that gadR encodes the dominant regulator of acid resistance in L. monocytogenes and that its sequence variability accounts for previously observed differences between strains in this trait. Together, these findings significantly advance our understanding of how this important pathogen copes with acid stress and suggest a potential molecular target to aid its control in the food chain.

5.
Int J Food Microbiol ; 399: 110238, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37148667

RESUMEN

Listeria monocytogenes is a foodborne pathogen that is characterized by its ability to withstand mild stresses (i.e. cold, acid, salt) often encountered in food products or food processing environments. In the previous phenotypic and genotypic characterization of a collection of L. monocytogenes strains, we have identified one strain 1381, originally obtained from EURL-lm, as acid sensitive (reduced survival at pH 2.3) and extremely acid intolerant (no growth at pH 4.9, which supports the growth of most strains). In this study, we investigated the cause of acid intolerance in strain 1381 by isolating and sequencing reversion mutants that were capable of growth at low pH (pH 4.8) to a similar extent as another strain (1380) from the same MLST clonal complex (CC2). Whole genome sequencing showed that a truncation in mntH, which encodes a homologue of an NRAMP (Natural Resistance-Associated Macrophage Protein) type Mn2+ transporter, is responsible for the acid intolerance phenotype observed in strain 1381. However, the mntH truncation alone was not sufficient to explain the acid sensitivity of strain 1381 at lethal pH values as strain 1381R1 (a mntH+ revertant) exhibited similar acid survival to its parental strain at pH 2.3. Further growth experiments demonstrated that Mn2+ (but not Fe2+, Zn2+, Cu2+, Ca2+, or Mg2+) supplementation fully rescues the growth of strain 1381 under low pH conditions, suggesting that a Mn2+ limitation is the likely cause of growth arrest in the mntH- background. Consistent with the important role of Mn2+ in the acid stress response was the finding that mntH and mntB (both encoding Mn2+ transporters) had higher transcription levels following exposure to mild acid stress (pH 5). Taken together, these results provide evidence that MntH-mediated Mn2+ uptake is essential for the growth of L. monocytogenes under low pH conditions. Moreover, since strain 1381 was recommended for conducting food challenge studies by the European Union Reference Laboratory, the use of this strain in evaluating the growth of L. monocytogenes in low pH environments where Mn2+ is scarce should be reconsidered. Furthermore, since it is unknown when strain 1381 acquired the mntH frameshift mutation, the ability of the strains used for challenge studies to grow under food-related stresses needs to be routinely validated.


Asunto(s)
Listeria monocytogenes , Manganeso , Listeria monocytogenes/fisiología , Tipificación de Secuencias Multilocus , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico , Proteínas de Transporte de Membrana/genética
6.
IEEE Trans Med Imaging ; 42(8): 2348-2359, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37027635

RESUMEN

Leukemia classification relies on a detailed cytomorphological examination of Bone Marrow (BM) smear. However, applying existing deep-learning methods to it is facing two significant limitations. Firstly, these methods require large-scale datasets with expert annotations at the cell level for good results and typically suffer from poor generalization. Secondly, they simply treat the BM cytomorphological examination as a multi-class cell classification task, thus failing to exploit the correlation among leukemia subtypes over different hierarchies. Therefore, BM cytomorphological estimation as a time-consuming and repetitive process still needs to be done manually by experienced cytologists. Recently, Multi-Instance Learning (MIL) has achieved much progress in data-efficient medical image processing, which only requires patient-level labels (which can be extracted from the clinical reports). In this paper, we propose a hierarchical MIL framework and equip it with Information Bottleneck (IB) to tackle the above limitations. First, to handle the patient-level label, our hierarchical MIL framework uses attention-based learning to identify cells with high diagnostic values for leukemia classification in different hierarchies. Then, following the information bottleneck principle, we propose a hierarchical IB to constrain and refine the representations of different hierarchies for better accuracy and generalization. By applying our framework to a large-scale childhood acute leukemia dataset with corresponding BM smear images and clinical reports, we show that it can identify diagnostic-related cells without the need for cell-level annotations and outperforms other comparison methods. Furthermore, the evaluation conducted on an independent test cohort demonstrates the high generalizability of our framework.


Asunto(s)
Aprendizaje Profundo , Leucemia , Niño , Humanos , Aprendizaje Automático , Procesamiento de Imagen Asistido por Computador , Leucemia/diagnóstico por imagen
7.
Int J Food Microbiol ; 394: 110165, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-36933360

RESUMEN

Listeria monocytogenes is a pathogenic bacterium that can inhabit a diverse range of environmental niches. This is largely attributed to the high proportion of carbohydrate-specific phosphotransferase system (PTS) genes in its genome. Carbohydrates can be assimilated as sources of energy but additionally they can serve as niche-specific cues for L. monocytogenes to shape its global gene expression, in order to cope with anticipated stresses. To examine carbon source utilization among wild L. monocytogenes isolates and to understand underlying molecular mechanisms, a diverse collection of L. monocytogenes strains (n = 168) with whole genome sequence (WGS) data available was screened for the ability to grow in chemically defined media with different carbon sources. The majority of the strains grew in glucose, mannose, fructose, cellobiose, glycerol, trehalose, and sucrose. Maltose, lactose, and rhamnose supported slower growth while ribose did not support any growth. In contrast to other strains, strain1386, which belonged to clonal complex 5 (CC5), was unable to grow on trehalose as a sole carbon source. WGS data revealed that it carried a substitution (N352K) in a putative PTS EIIBC trehalose transporter, TreB, while this asparagine residue is conserved in other strains in this collection. Spontaneous mutants of strain 1386 that could grow in trehalose were found to harbour a reversion of the substitution in TreB. These results provide genetic evidence that TreB is responsible for trehalose uptake and that the N352 residue is essential for TreB activity. Moreover, reversion mutants also restored other unusual phenotypes that strain 1386 displayed, i.e. altered colony morphology, impaired biofilm development, and reduced acid resistance. Transcriptional analysis at stationary phase with buffered BHI media revealed that trehalose metabolism positively influences the transcription of genes encoding amino acid-based acid resistance mechanisms. In summary, our results demonstrated that N352 is key to the function of the sole trehalose transporter TreB in L. monocytogenes and suggest that trehalose metabolism alters physiology to favour biofilm development and acid stress resistance. Moreover, since strain 1386 is among the strains recommended by the European Union Reference Laboratory for conducting food challenge studies in order to determine whether or not L. monocytogenes can grow in food, these findings have important implications for food safety.


Asunto(s)
Listeria monocytogenes , Trehalosa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbohidratos , Proteínas de Transporte de Membrana , Biopelículas
8.
Materials (Basel) ; 16(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36984378

RESUMEN

Electrode induction melting gas atomization (EIGA) is a wildly applied method for preparing ultra-clean and spherical metal powders, which is a completely crucible-free melting and atomization process. Based on several experiments, we found that although the sphericity of metal powders prepared by EIGA was higher than that of other atomization methods, there were still some satellite powders. To understand the formation mechanism of the satellite, a computational fluid dynamics (CFD) approach FLUENT and a discrete particle model (DPM) were developed to simulate the gas atomization process, and several EIGA experiments with different argon pressures (2.5-4.0 MPa) were designed. A numerical simulation of the gas-flow field verified the formation trajectory of satellites, and the Hall flow rate of the powder produced under different pressures was 13.3, 13.8, 15.6, and 16.8, which were consistent with the prediction of the numerical simulation. This study provides theoretical support for understanding the satellite formation mechanism and improving powder sphericity in the EIGA process.

9.
Bioinformatics ; 39(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36617159

RESUMEN

MOTIVATION: Artificially making clinical decisions for patients with multi-morbidity has long been considered a thorny problem due to the complexity of the disease. Drug recommendations can assist doctors in automatically providing effective and safe drug combinations conducive to treatment and reducing adverse reactions. However, the existing drug recommendation works ignored two critical information. (i) Different types of medical information and their interrelationships in the patient's visit history can be used to construct a comprehensive patient representation. (ii) Patients with similar disease characteristics and their corresponding medication information can be used as a reference for predicting drug combinations. RESULTS: To address these limitations, we propose DAPSNet, which encodes multi-type medical codes into patient representations through code- and visit-level attention mechanisms, while integrating drug information corresponding to similar patient states to improve the performance of drug recommendation. Specifically, our DAPSNet is enlightened by the decision-making process of human doctors. Given a patient, DAPSNet first learns the importance of patient history records between diagnosis, procedure and drug in different visits, then retrieves the drug information corresponding to similar patient disease states for assisting drug combination prediction. Moreover, in the training stage, we introduce a novel information constraint loss function based on the information bottleneck principle to constrain the learned representation and enhance the robustness of DAPSNet. We evaluate the proposed DAPSNet on the public MIMIC-III dataset, our model achieves relative improvements of 1.33%, 1.20% and 2.03% in Jaccard, F1 and PR-AUC scores, respectively, compared to state-of-the-art methods. AVAILABILITY AND IMPLEMENTATION: The source code is available at the github repository: https://github.com/andylun96/DAPSNet.


Asunto(s)
Medicina de Precisión , Programas Informáticos , Humanos , Aprendizaje Profundo
10.
Med Image Anal ; 83: 102652, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36327654

RESUMEN

Cancer region detection (CRD) and subtyping are two fundamental tasks in digital pathology image analysis. The development of data-driven models for CRD and subtyping on whole-slide images (WSIs) would mitigate the burden of pathologists and improve their accuracy in diagnosis. However, the existing models are facing two major limitations. Firstly, they typically require large-scale datasets with precise annotations, which contradicts with the original intention of reducing labor effort. Secondly, for the subtyping task, the non-cancerous regions are treated as the same as cancerous regions within a WSI, which confuses a subtyping model in its training process. To tackle the latter limitation, the previous research proposed to perform CRD first for ruling out the non-cancerous region, then train a subtyping model based on the remaining cancerous patches. However, separately training ignores the interaction of these two tasks, also leads to propagating the error of the CRD task to the subtyping task. To address these issues and concurrently improve the performance on both CRD and subtyping tasks, we propose a semi-supervised multi-task learning (MTL) framework for cancer classification. Our framework consists of a backbone feature extractor, two task-specific classifiers, and a weight control mechanism. The backbone feature extractor is shared by two task-specific classifiers, such that the interaction of CRD and subtyping tasks can be captured. The weight control mechanism preserves the sequential relationship of these two tasks and guarantees the error back-propagation from the subtyping task to the CRD task under the MTL framework. We train the overall framework in a semi-supervised setting, where datasets only involve small quantities of annotations produced by our minimal point-based (min-point) annotation strategy. Extensive experiments on four large datasets with different cancer types demonstrate the effectiveness of the proposed framework in both accuracy and generalization.


Asunto(s)
Neoplasias , Aprendizaje Automático Supervisado , Humanos , Cabeza , Neoplasias/diagnóstico por imagen
11.
IEEE Trans Med Imaging ; 41(12): 3611-3623, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35839184

RESUMEN

Tissue segmentation is an essential task in computational pathology. However, relevant datasets for such a pixel-level classification task are hard to obtain due to the difficulty of annotation, bringing obstacles for training a deep learning-based segmentation model. Recently, contrastive learning has provided a feasible solution for mitigating the heavy reliance of deep learning models on annotation. Nevertheless, applying contrastive loss to the most abstract image representations, existing contrastive learning frameworks focus on global features, therefore, are less capable of encoding finer-grained features (e.g., pixel-level discrimination) for the tissue segmentation task. Enlightened by domain knowledge, we design three contrastive learning tasks with multi-granularity views (from global to local) for encoding necessary features into representations without accessing annotations. Specifically, we construct: (1) an image-level task to capture the difference between tissue components, i.e., encoding the component discrimination; (2) a superpixel-level task to learn discriminative representations of local regions with different tissue components, i.e., encoding the prototype discrimination; (3) a pixel-level task to encourage similar representations of different tissue components within a local region, i.e., encoding the spatial smoothness. Through our global-to-local pre-training strategy, the learned representations can reasonably capture the domain-specific and fine-grained patterns, making them easily transferable to various tissue segmentation tasks in histopathological images. We conduct extensive experiments on two tissue segmentation datasets, while considering two real-world scenarios with limited or sparse annotations. The experimental results demonstrate that our framework is superior to existing contrastive learning methods and can be easily combined with weakly supervised and semi-supervised segmentation methods.

12.
Appl Environ Microbiol ; 88(11): e0033022, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35583325

RESUMEN

The alternative sigma factor B (σB) contributes to the stress tolerance of the foodborne pathogen Listeria monocytogenes by upregulating the general stress response. We previously showed that σB loss-of-function mutations arise frequently in strains of L. monocytogenes and suggested that mild stresses might favor the selection of such mutations. In this study, we performed in vitro evolution experiments (IVEE) where L. monocytogenes was allowed to evolve over 30 days at elevated (42°C) or lower (30°C) incubation temperatures. Isolates purified throughout the IVEE revealed the emergence of sigB operon mutations at 42°C. However, at 30°C, independent alleles in the agr locus arose, resulting in the inactivation of Agr quorum sensing. Colonies of both sigB mutants and agr mutants exhibited a greyer coloration on 7-days-old agar plates than those of the parental strain. Scanning electron microscopy revealed a more complex colony architecture in the wild type than in the mutant strains. sigB mutant strains outcompeted the parental strain at 42°C but not at 30°C, while agr mutant strains showed a small increase in competitive fitness at 30°C. Analysis of 40,080 L. monocytogenes publicly available genome sequences revealed a high occurrence rate of premature stop codons in both the sigB and agrCA loci. An analysis of a local L. monocytogenes strain collection revealed 5 out of 168 strains carrying agrCA alleles. Our results suggest that the loss of σB or Agr confer an increased competitive fitness in some specific conditions and this likely contributes to the emergence of these alleles in strains of L. monocytogenes. IMPORTANCE To withstand environmental aggressions, L. monocytogenes upregulates a large regulon through the action of the alternative sigma factor B (σB). However, σB becomes detrimental for L. monocytogenes growth under mild stresses, which confer a competitive advantage to σB loss-of-function alleles. Temperatures of 42°C, a mild stress, are often employed in mutagenesis protocols of L. monocytogenes and promote the emergence of σB loss-of-function alleles in the sigB operon. In contrast, lower temperatures of 30°C promote the emergence of Agr loss-of-function alleles, a cell-cell communication mechanism in L. monocytogenes. Our findings demonstrate that loss-of-function alleles emerge spontaneously in laboratory-grown strains. These alleles rise in the population as a consequence of the trade-off between growth and survival imposed by the activation of σB in L. monocytogenes. Additionally, our results demonstrate the importance of identifying unwanted hitchhiker mutations in newly constructed mutant strains.


Asunto(s)
Listeria monocytogenes , Factor sigma , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Regulón , Factor sigma/genética , Factor sigma/metabolismo , Temperatura
13.
Appl Environ Microbiol ; 88(10): e0005122, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35481758

RESUMEN

To understand the molecular mechanisms that contribute to the stress responses of the important foodborne pathogen Listeria monocytogenes, we collected 139 strains (meat, n = 25; dairy, n = 10; vegetable, n = 8; seafood, n = 14; mixed food, n = 4; and food processing environments, n = 78), mostly isolated in Ireland, and subjected them to whole-genome sequencing. These strains were compared to 25 Irish clinical isolates and 4 well-studied reference strains. Core genome and pan-genome analysis confirmed a highly clonal and deeply branched population structure. Multilocus sequence typing showed that this collection contained a diverse range of strains from L. monocytogenes lineages I and II. Several groups of isolates with highly similar genome content were traced to single or multiple food business operators, providing evidence of strain persistence or prevalence, respectively. Phenotypic screening assays for tolerance to salt stress and resistance to acid stress revealed variants within several clonal complexes that were phenotypically distinct. Five of these phenotypic outliers were found to carry mutations in the sigB operon, which encodes the stress-inducible sigma factor sigma B. Transcriptional analysis confirmed that three of the strains that carried mutations in sigB, rsbV, or rsbU had reduced SigB activity, as predicted. These strains exhibited increased tolerance to salt stress and displayed decreased resistance to low pH stress. Overall, this study shows that loss-of-function mutations in the sigB operon are comparatively common in field isolates, probably reflecting the cost of the general stress response to reproductive fitness in this pathogen. IMPORTANCE The bacterial foodborne pathogen Listeria monocytogenes frequently contaminates various categories of food products and is able to cause life-threatening infections when ingested by humans. Thus, it is important to control the growth of this bacterium in food by understanding the mechanisms that allow its proliferation under suboptimal conditions. In this study, intraspecies heterogeneity in stress response was observed across a collection consisting of mainly Irish L. monocytogenes isolates. Through comparisons of genome sequence and phenotypes observed, we identified three strains with impairment of the general stress response regulator SigB. Two of these strains are used widely in food challenge studies for evaluating the growth potential of L. monocytogenes. Given that loss of SigB function is associated with atypical phenotypic properties, the use of these strains in food challenge studies should be re-evaluated.


Asunto(s)
Proteínas Bacterianas , Listeria monocytogenes , Factor sigma , Proteínas Bacterianas/genética , Microbiología de Alimentos , Listeria monocytogenes/genética , Fenotipo , Filogenia , Factor sigma/genética
14.
Genes (Basel) ; 11(11)2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33187233

RESUMEN

Acidity is one of the principal physicochemical factors that influence the behavior of microorganisms in any environment, and their response to it often determines their ability to grow and survive. Preventing the growth and survival of pathogenic bacteria or, conversely, promoting the growth of bacteria that are useful (in biotechnology and food production, for example), might be improved considerably by a deeper understanding of the protective responses that these microorganisms deploy in the face of acid stress. In this review, we survey the molecular mechanisms used by two unrelated bacterial species in their response to low pH stress. We chose to focus on two well-studied bacteria, Escherichia coli (phylum Proteobacteria) and Listeria monocytogenes (phylum Firmicutes), that have both evolved to be able to survive in the mammalian gastrointestinal tract. We review the mechanisms that these species use to maintain a functional intracellular pH as well as the protective mechanisms that they deploy to prevent acid damage to macromolecules in the cells. We discuss the mechanisms used to sense acid in the environment and the regulatory processes that are activated when acid is encountered. We also highlight the specific challenges presented by organic acids. Common themes emerge from this comparison as well as unique strategies that each species uses to cope with acid stress. We highlight some of the important research questions that still need to be addressed in this fascinating field.


Asunto(s)
Escherichia coli/metabolismo , Listeria monocytogenes/metabolismo , Estrés Fisiológico/fisiología , Ácidos , Adaptación Fisiológica/genética , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica/genética , Concentración de Iones de Hidrógeno , Estrés Fisiológico/genética
15.
J Bacteriol ; 202(9)2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32094160

RESUMEN

In Listeria monocytogenes, the full details of how stress signals are integrated into the σB regulatory pathway are not yet available. To help shed light on this question, we investigated a collection of transposon mutants that were predicted to have compromised activity of the alternative sigma factor B (σB). These mutants were tested for acid tolerance, a trait that is known to be under σB regulation, and they were found to display increased acid sensitivity, similar to a mutant lacking σB (ΔsigB). The transposon insertions were confirmed by whole-genome sequencing, but in each case, the strains were also found to carry a frameshift mutation in the sigB operon. The changes were predicted to result in premature stop codons, with negative consequences for σB activation, independently of the transposon location. Reduced σB activation in these mutants was confirmed. Growth measurements under conditions similar to those used during the construction of the transposon library revealed that the frameshifted sigB operon alleles conferred a growth advantage at higher temperatures, during late exponential phase. Mixed-culture experiments at 42°C demonstrated that the loss of σB activity allowed mutants to take over a population of parental bacteria. Together, our results suggest that mutations affecting σB activity can arise during laboratory culture because of the growth advantage conferred by these mutations under mild stress conditions. The data highlight the significant cost of stress protection in this foodborne pathogen and emphasize the need for whole-genome sequence analysis of newly constructed strains to confirm the expected genotype.IMPORTANCE In the present study, we investigated a collection of Listeria monocytogenes strains that all carried sigB operon mutations. The mutants all had reduced σB activity and were found to have a growth advantage under conditions of mild heat stress (42°C). In mixed cultures, these mutants outcompeted the wild type when mild heat stress was present but not at an optimal growth temperature. An analysis of 22,340 published L. monocytogenes genome sequences found a high rate of premature stop codons present in genes positively regulating σB activity. Together, these findings suggest that the occurrence of mutations that attenuate σB activity can be favored under conditions of mild stress, probably highlighting the burden on cellular resources that stems from deploying the general stress response.


Asunto(s)
Proteínas Bacterianas/metabolismo , Listeria monocytogenes/fisiología , Factor sigma/metabolismo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Cinética , Listeria monocytogenes/química , Listeria monocytogenes/genética , Listeria monocytogenes/crecimiento & desarrollo , Mutación , Operón , Factor sigma/genética , Estrés Fisiológico
16.
Contrast Media Mol Imaging ; 2018: 3535769, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30627059

RESUMEN

The toxicity of gadolinium-based contrast agents (GBCAs) has drawn a lot of attention. Nephrogenic systemic fibrosis (NSF), a lethal disease related to the use of GBCAs, is still not understood. Recently, gadolinium retention is found in brain tissues after repeated use of GBCAs in magnetic resonance imaging (MRI). However, most of the works investigating the toxicity of GBCAs are focusing on its high-concentration (0.5-10 mM) part, which is not reflective of the physiological conditions in human beings. Macrophages play a regulatory role in immune responses and are responsible for the fibrosis process. Their role in gadolinium retention and the pathogenesis of NSF, however, has seldom been investigated. This study aimed to evaluate the immune response generated by macrophages (RAW 264.7) exposing to low levels of GBCAs. The incubation concentration of GBCAs, including Omniscan®, Primovist®, Magnevist®, and Gadovist®, is proportional to the level of gadolinium uptake when detected via inductively coupled plasma mass spectrometry (ICP-MS) and imaged by MRI, whereas Primovist® treatment groups have highest gadolinium uptake among all of the tested concentrations. Low-concentration (2.5 µmol/L) Gd chloride or GBCAs exposure promoted the reactive production of oxygen species (ROS), nitrate/nitrite, prostaglandin E2 (PGE2), and suppressed the potential of mitochondrial membrane. There was higher ROS, nitrate/nitrite, and PGE2 production in the Primovist®, Omniscan®, and Magnevist® groups compared to the Gadovist® group. In face of lipopolysaccharide (LPS) stimulation, Primovist®, Omniscan®, and Magnevist® groups exhibited elevated nitrite/nitrate and suppressed IL-1ß secretion and IL-6 and IL-10 secretion. Moreover, upon LPS stimulation, there is decreased TNF-α secretion 4 hours after Primovist® or Omiscan® exposure but the TNF-α secretion increased at 24 hours. Our data suggest that there is upregulated inflammation even in the presence of low levels of GBCAs, even similar to the physiological condition in murine macrophage. Further investigation of GBCAs on the human macrophage or in vivo animal study may clarify the role of macrophage on the pathogenesis of NSF and other GBCAs-related disease.


Asunto(s)
Medios de Contraste/química , Gadolinio/farmacocinética , Macrófagos/efectos de los fármacos , Imagen por Resonancia Magnética/métodos , Estrés Oxidativo/efectos de los fármacos , Animales , Medios de Contraste/farmacología , Medios de Contraste/toxicidad , Citocinas/biosíntesis , Citocinas/efectos de los fármacos , Dinoprostona , Humanos , Potencial de la Membrana Mitocondrial , Ratones , Dermopatía Fibrosante Nefrogénica/inducido químicamente , Nitratos , Nitritos , Células RAW 264.7 , Especies Reactivas de Oxígeno
17.
Phytother Res ; 30(2): 214-21, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26560814

RESUMEN

Nobiletin, a bioactive polymethoxylated flavone (5,6,7,8,3(') ,4(') -hexamethoxyflavone), is abundant in citrus fruit peel. Although nobiletin exhibits antitumor activity against various cancer cells, the effect of nobiletin on glioma cells remains unclear. The aim of this study was to determine the effects of nobiletin on the human U87 and Hs683 glioma cell lines. Treating glioma cells with nobiletin (20-100 µm) reduced cell viability and arrested the cell cycle in the G0/G1 phase, as detected using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and propidium iodide (PI) staining, respectively; however, nobiletin did not induce cell apoptosis according to PI-annexin V double staining. Data from western blotting showed that nobiletin significantly attenuated the expression of cyclin D1, cyclin-dependent kinase 2, cyclin-dependent kinase 4, and E2 promoter-binding factor 1 (E2F1) and the phosphorylation of Akt/protein kinase B and mitogen-activated protein kinases, including p38, extracellular signal-regulated kinase, and c-Jun N-terminal kinase. Our data also showed that nobiletin inhibited glioma cell migration, as detected by both functional wound healing and transwell migration assays. Altogether, the present results suggest that nobiletin inhibits mitogen-activated protein kinase and Akt/protein kinase B pathways and downregulates positive regulators of the cell cycle, leading to subsequent suppression of glioma cell proliferation and migration. Our findings evidence that nobiletin may have potential for treating glioblastoma multiforme.


Asunto(s)
Puntos de Control del Ciclo Celular/efectos de los fármacos , Flavonas/farmacología , Glioma/patología , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citrus/química , Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , Factor de Transcripción E2F1/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo
18.
Environ Toxicol ; 29(12): 1428-36, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23766236

RESUMEN

Exposure to benzidine has been known to induce human cancers, particularly bladder carcinomas. In this study, the zebrafish model was used to investigate the developmental toxicity of benzidine. Embryos at 6 h postfertilization (hpf) that were exposed to benzidine exhibited embryonic death in a dose- and time-dependent manner. Benzidine induced malformations in zebrafish, such as small brain development, shorter axes, and a slight pericardial edema. High concentrations (50, 100, and 200 µM) of benzidine triggered widespread apoptosis in the brain and dorsal neurons, as evidenced by acridine orange and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assays. Real-time polymerase chain reaction analysis also showed that benzidine treatment affected p53, bax, and noxa expression. Decreases in specific brain markers, such as emx1 in the telencephalon, ngn1 in differentiated neurons, and otx2 in the midbrain, were observed in benzidine-treated embryos at 24 hpf. Conversely, no overt changes to pax2.1 expression in the midbrain-hindbrain boundary were found. Moreover, the use of Tg(HuC:GFP) zebrafish showed that benzidine caused a malformation of the telencephalon region. Our findings show that benzidine exposure triggers widespread apoptosis in the zebrafish brain and dorsal neurons, resulting in the development of an abnormal telencephalon.


Asunto(s)
Bencidinas/toxicidad , Telencéfalo/anomalías , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Neuronas/metabolismo , Telencéfalo/efectos de los fármacos , Telencéfalo/embriología , Pez Cebra/embriología
19.
Bull Environ Contam Toxicol ; 88(5): 776-80, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22398690

RESUMEN

Degradation of imidacloprid in chrysanthemi flos and cultivated soil was studied. The half-lives of imidacloprid were 3.55-5.17 days (soil), 2.10-3.98 days (fresh buds and flowers), 22.14 days (dry flowers, 5°C) and 13.08 days (dry flower, 20°C), separately. The temperature can affect imidacloprid degradation in soil and dry chrysanthemum buds and flowers. Imidacloprid residues in chrysanthemum flowers were more stable during store stage than growing one. Few imidacloprid residues would be dissolved into chrysanthemum tea liquor when the residue in dry buds or dry flowers was below 0.8 mg/kg.


Asunto(s)
Chrysanthemum/química , Flores/química , Imidazoles/análisis , Insecticidas/análisis , Nitrocompuestos/análisis , Contaminantes del Suelo/análisis , Monitoreo del Ambiente , Imidazoles/química , Insecticidas/química , Modelos Químicos , Neonicotinoides , Nitrocompuestos/química , Suelo/química , Contaminantes del Suelo/química
20.
Zhongguo Zhong Yao Za Zhi ; 35(13): 1674-8, 2010 Jul.
Artículo en Chino | MEDLINE | ID: mdl-20862954

RESUMEN

OBJECTIVE: To study the residue of in roots of Atractylodes macrocephalal and in soil. METHOD: Samples were extracted with methanol. The extracts were cleaned up by liquid-liquid extraction and detected by HPLC. RESULT: Repeatability and accuracy of the method was verified by fortified recovery at 0.01, 0.05, 0.1, 0.2 mg x kg(-1) levels. Average recovery were 86.1%-98.3% and RSD were 1.0%-6.5% in root and soil. A. macrocephala was treated with two dosage of carbendazim during growing. Results of field test showed that the half lives of carbendazim were 6.51-7.98 d in cultivated soil, 4.51-6.50 d in roots, separately. After sample was preliminarily processed, the residue of dried samples was 0.042-0.433 mg x kg(-1), higher than the fresh samples. CONCLUSION: If 0.2 mg x kg(-1) is recommended as the MRL (maximum residues limited) of carbendazim in the roots of A. macrocephala, it is suggested that the dose of 0.675 kg a.i. x hm(-1) carbendazim is sprayed twice a year, and carbendazim should not be used within 21 days before the harvest.


Asunto(s)
Atractylodes/química , Bencimidazoles/análisis , Carbamatos/análisis , Residuos de Medicamentos/análisis , Fungicidas Industriales/análisis , Agricultura/métodos , Atractylodes/efectos de los fármacos , Bencimidazoles/farmacología , Carbamatos/farmacología , Residuos de Medicamentos/farmacología , Fungicidas Industriales/farmacología , Raíces de Plantas/química , Raíces de Plantas/efectos de los fármacos , Control de Calidad , Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA