Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Lab Chip ; 13(9): 1743-53, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23475014

RESUMEN

Various microfluidic cell culture devices have been developed for in vitro cell studies because of their capabilities to reconstitute in vivo microenvironments. However, controlling flows in microfluidic devices is not straightforward due to the wide varieties of fluidic properties of biological samples. Currently, flow observations mainly depend on optical imaging and macro scale transducers, which usually require sophisticated instrumentation and are difficult to scale up. Without real time monitoring, the control of flows can only rely on theoretical calculations and numerical simulations. Consequently, these devices have difficulty in being broadly exploited in biological research. This paper reports a microfluidic device with embedded pressure sensors constructed using electrofluidic circuits, which are electrical circuits built by fluidic channels filled with ionic liquid. A microfluidic device culturing endothelial cells under various shear stress and hydrostatic pressure combinations is developed to demonstrate this concept. The device combines the concepts of electrofluidic circuits for pressure sensing, and an equivalent circuit model to design the cell culture channels. In the experiments, human umbilical vein endothelial cells (HUVECs) are cultured in the device with a continuous medium perfusion, which provides the combinatory mechanical stimulations, while the hydrostatic pressures are monitored in real time to ensure the desired culture conditions. The experimental results demonstrate the importance of real time pressure monitoring, and how both mechanical stimulations affect the HUVEC culture. This developed microfluidic device is simple, robust, and can be easily scaled up for high-throughput experiments. Furthermore, the device provides a practical platform for an in vitro cell culture under well-controlled and dynamic microenvironments.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana , Técnicas Analíticas Microfluídicas , Modelos Biológicos , Estrés Fisiológico , Células Cultivadas , Electrodos , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Presión Hidrostática , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Presión , Resistencia al Corte
2.
Biomicrofluidics ; 7(6): 64104, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24396538

RESUMEN

In this paper, we develop a microfluidic device capable of generating nitric oxide (NO) gradients for cell culture using spatially controlled chemical reactions. NO plays an essential role in various biological activities, including nervous, immune, and cardiovascular systems. The device developed in this paper can control NO gradients without utilizing expensive and hazardous high purity NO gas sources or direct addition of NO donors. Consequently, the device provides an efficient, cost-effective, robust, and stable platform to generate NO gradients for cell culture studies. In the experiments, NO gradients are first characterized using a NO-sensitive fluorescence dye, and cell experiments using aortic smooth muscle cells are conducted. The results demonstrate that the device can alter the intracellular NO concentrations and further affect the Ca(2+) concentration oscillation for the cells. The device developed in this paper provides a powerful platform for researchers better study the biological roles of NO and its spatial distribution using in vitro cell models with minimal instrumentation.

3.
Rev Sci Instrum ; 83(4): 045116, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22559585

RESUMEN

We demonstrate a novel, vertical temperature-mapping incubator utilizing eight layers of thermoelectric (TE) modules mounted around a test tube. The temperature at each layer of the TE module is individually controlled to simulate the vertical temperature profile of geo-temperature variations with depth. Owing to the constraint of non-intrusion to the filled geo-samples, the temperature on the tube wall is adopted for measurement feedback. The design considerations for the incubator include spatial arrangement of the energy transfer mechanism, heating capacity of the TE modules, minimum required sample amount for follow-up instrumental or chemical analysis, and the constraint of non-intrusion to the geo-samples during incubation. The performance of the incubator is experimentally evaluated with two tube conditions and under four preset temperature profiles. Test tubes are either empty or filled with quartz sand, which has comparable thermal properties to the materials in the geo-environment. The applied temperature profiles include uniform, constant temperature gradient, monotonic-increasing parabolic, and parabolic. The temperature on the tube wall can be controlled between 20 °C and 90 °C with an averaged root mean squared error of 1 °C.


Asunto(s)
Electricidad , Fenómenos Geológicos , Microbiología/instrumentación , Microtecnología/instrumentación , Temperatura , Ecosistema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...