Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Bioact Mater ; 35: 31-44, 2024 May.
Article En | MEDLINE | ID: mdl-38304916

Skin microbiota plays an important role in wound healing, but skin injuries are highly susceptible to wound infections, leading to disruption of the skin microbiota. However, conventional antibacterial hydrogels eliminate both probiotics and pathogenic bacteria, disrupting the balance of the skin microbiota. Therefore, it is important to develop a wound dressing that can fend off foreign pathogenic bacteria while preserving skin microbiota stability. Inspired by live bacteria therapy, we designed a probiotic hydrogel (HAEPS@L.sei gel) with high viability for promoting wound healing. Lactobacillus paracasei TYM202 encapsulated in the hydrogel has the activity of promoting wound healing, and the hydrogel matrix EPS-M76 has the prebiotic activity that promotes the proliferation and metabolism of Lactobacillus paracasei TYM202. During the wound healing process, HAEPS@L.sei gel releases lactic acid and acetic acid to resist the growth of pathogenic bacteria while maintaining Firmicutes and Proteobacteria balance at the phylum level, thus preserving skin microbiota stability. Our results showed that live probiotic hydrogels reduce the incidence of inflammation during wound healing while promoting angiogenesis and increasing collagen deposition. This study provides new ideas for developing wound dressings predicated on live bacterial hydrogels.

2.
Microbiome ; 11(1): 262, 2023 Nov 25.
Article En | MEDLINE | ID: mdl-38001551

BACKGROUND: Diet-induced dyslipidemia is linked to the gut microbiota, but the causality of microbiota-host interaction affecting lipid metabolism remains controversial. Here, the humanized dyslipidemia mice model was successfully built by using fecal microbiota transplantation from dyslipidemic donors (FMT-dd) to study the causal role of gut microbiota in diet-induced dyslipidemia. RESULTS: We demonstrated that FMT-dd reshaped the gut microbiota of mice by increasing Faecalibaculum and Ruminococcaceae UCG-010, which then elevated serum cholicacid (CA), chenodeoxycholic acid (CDCA), and deoxycholic acid (DCA), reduced bile acid synthesis and increased cholesterol accumulation via the hepatic farnesoid X receptor-small heterodimer partner (FXR-SHP) axis. Nevertheless, high-fat diet led to decreased Muribaculum in the humanized dyslipidemia mice induced by FMT-dd, which resulted in reduced intestinal hyodeoxycholic acid (HDCA), raised bile acid synthesis and increased lipid absorption via the intestinal farnesoid X receptor-fibroblast growth factor 19 (FXR-FGF19) axis. CONCLUSIONS: Our studies implicated that intestinal FXR is responsible for the regulation of lipid metabolism in diet-induced dyslipidemia mediated by gut microbiota-bile acid crosstalk. Video Abstract.


Bile Acids and Salts , Gastrointestinal Microbiome , Animals , Mice , Bile Acids and Salts/metabolism , Diet, High-Fat , Gastrointestinal Microbiome/physiology , Lipid Metabolism , Liver/metabolism , Mice, Inbred C57BL
3.
Int J Biol Macromol ; 253(Pt 7): 127335, 2023 Dec 31.
Article En | MEDLINE | ID: mdl-37820919

This study aimed to explore the efficacy of polysaccharides from bergamot (BP) in alleviating DSS-induced colitis. Results showed that BP was primarily composed of two components, BP-1 and BP-2, with similar monosaccharide compositions to BP (mainly glucose and xylose) and molecular weights (Mw) of 4.50 × 105 and 2.35 × 105 Da. This study found BP relieved disease symptoms such as weight loss and colon shortening in mice with colitis. Gut microbiota and metabolomics analysis revealed that the BP could also promote the proliferation of beneficial bacteria such as Bifidobacteria, Butyrivibrio, and Blautia, resulting in increased levels of SCFAs and L-phenylalanine, which were associated with phenylalanine, tyrosine, and tryptophan metabolism pathways. Further analysis validated the inflammatory activity of L-phenylalanine. Hence, BP may relieve colitis symptoms by regulating the gut microbiota and metabolism, which reduced inflammation and enhanced the expression of tight junctional proteins (TJ proteins) and mucin in the intestine.


Colitis, Ulcerative , Colitis , Gastrointestinal Microbiome , Animals , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis/chemically induced , Colitis/drug therapy , Inflammation , Colon , Phenylalanine , Dextran Sulfate , Disease Models, Animal , Mice, Inbred C57BL , Polysaccharides/pharmacology , Polysaccharides/therapeutic use
4.
Foods ; 12(15)2023 Jul 28.
Article En | MEDLINE | ID: mdl-37569146

This study aimed to compare the in vitro fermentation characteristics of polysaccharides from Bergamot and Laoxianghuang (fermented 1, 3, and 5 years from bergamot) using the stable in vitro human gut fermentation model. Results showed that bergamot polysaccharide (BP) and Laoxianghuang polysaccharides (LPs) with different surface topographies were characterized as mannorhamnan (comprising Mannose and Rhamnose) and polygalacturonic acid (comprising Galacturonic acid and Galactose), respectively. The distinct effects on the gut microbiota and metabolome of BP and LPs may be due to their different monosaccharide compositions and surface morphologies. BP decreased harmful Fusobacterium and promoted beneficial Bifidobacterium, which was positively correlated with health-enhancing metabolites such as acetic acid, propionic acid, and pyridoxamine. Lactobacillus, increased by LPs, was positively correlated with 4-Hydroxybenzaldehyde, acetic acid, and butyric acid. Overall, this study elucidated gut microbiota and the metabolome regulatory discrepancies of BP and LPs, potentially contributing to their development as prebiotics in healthy foods.

5.
Food Funct ; 14(7): 3379-3390, 2023 Apr 03.
Article En | MEDLINE | ID: mdl-36943742

To investigate the prebiotic potential of two Laminaria japonica polysaccharide (LJP) fractions with different molecular weights and structures, we conducted in vitro simulated digestion and fermentation with hyperlipidemia-associated human gut microbiota. The results indicated that the LJP fraction with higher molecular weight (HLJP) appeared to have a more complex monosaccharide composition and microstructure than did the LJP fraction with lower molecular weight (LLJP), and both fractions could not be digested by in vitro simulated digestion. After in vitro fermentation, HLJP generated more short-chain fatty acids (SCFAs) and showed stronger ability to regulate core metabolites. Intriguingly, LLJP is better at promoting the proliferation of Akkermansiaceae, while HLJP is more effective in reducing the Firmicutes/Bacteroidetes ratio and increasing the content of Bacteroidaceae and Tannerellaceae. The present study indicates that LLJP and HLJP may have probiotic effects through different approaches and these differences may be related to the molecular weight and structure of the polysaccharides.


Gastrointestinal Microbiome , Laminaria , Humans , Laminaria/chemistry , Polysaccharides/chemistry , Fatty Acids, Volatile/metabolism , Fermentation , Metabolome
6.
J Agric Food Chem ; 69(50): 15414-15424, 2021 Dec 22.
Article En | MEDLINE | ID: mdl-34889098

This study aimed to find the best in vitro fermentation method by integrative analysis of the gut microbiota and metabolome. We selected five different media: brain heart infusion broth, Luria-Bertani broth, Mueller-Hinton broth, anaerobe basal broth, and anaerobic medium base (AMB). After in vitro fermentation, the gut microbiota and metabolites were analyzed at different culture times. The results showed that different culture media have different effects on the bacterial community structure and metabolites. The integrative analysis of gut microbiota and metabolism also proved that AMB medium is effective in keeping a stable bacterial community structure and producing less metabolites and short-chain fatty acids by simulating the nutrient-poor microenvironment in the human gut during in vitro fermentation. Thus, culturing with AMB medium for 48 h is the most suitable in vitro model for human gut microbiota fermentation, which provides an alternative approach for diet and health research.


Gastrointestinal Microbiome , Fatty Acids, Volatile , Feces , Fermentation , Humans , Metabolome
...