Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 837
1.
Head Neck ; 2024 May 21.
Article En | MEDLINE | ID: mdl-38769935

OBJECTIVE: The study aimed to investigate the effect of the SUMOylation status of Drp1 on mitochondrial fission in CDDP-treated HNSCC cells cultured under hypoxic conditions. MATERIALS AND METHODS: The effect of hypoxia on the chemosensitivity of HNCC cells was evaluated by flow cytometry and CCK-8 assays. The biological function of SUMO-specific peptidase 3 (SENP3) was evaluated by loss-of-function assays both in vitro and in vivo. SENP3-regulated deSUMOylation of Drp1 were performed with co-IP assays. RESULTS: SENP3 expression correlated with chemosensitivity in clinical HNSCC samples subjected to hypoxic conditions. Hypoxia-induced ROS increased HIF-1α/SENP3 expression and mitochondrial fission in CDDP-treated HNSCC cells, and these effects were reversed by NAC treatment. SENP3 knockdown reversed hypoxia-induced mitochondrial fission and inhibited HNSCC cell apoptosis, which decreased CDDP sensitivity. Furthermore, hypoxia-induced SENP3 deconjugated SUMO2 from Drp1. CONCLUSION: Our findings revealed that hypoxia-induced SENP3 facilitates CDDP sensitivity and mitochondrial fission via deSUMOylation of Drp1.

2.
Child Dev ; 2024 May 14.
Article En | MEDLINE | ID: mdl-38742715

Human brain demonstrates amazing readiness for speech and language learning at birth, but the auditory development preceding such readiness remains unknown. Cochlear implanted (CI) children (n = 67; mean age 2.77 year ± 1.31 SD; 28 females) with prelingual deafness provide a unique opportunity to study this stage. Using functional near-infrared spectroscopy, it was revealed that the brain of CI children was irresponsive to sounds at CI hearing onset. With increasing CI experiences up to 32 months, the brain demonstrated function, region and hemisphere specific development. Most strikingly, the left anterior temporal lobe showed an oscillatory trajectory, changing in opposite phases for speech and noise. The study provides the first longitudinal brain imaging evidence for early auditory development preceding speech acquisition.

3.
BMC Bioinformatics ; 25(1): 140, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38561679

Drug combination therapy is generally more effective than monotherapy in the field of cancer treatment. However, screening for effective synergistic combinations from a wide range of drug combinations is particularly important given the increase in the number of available drug classes and potential drug-drug interactions. Existing methods for predicting the synergistic effects of drug combinations primarily focus on extracting structural features of drug molecules and cell lines, but neglect the interaction mechanisms between cell lines and drug combinations. Consequently, there is a deficiency in comprehensive understanding of the synergistic effects of drug combinations. To address this issue, we propose a drug combination synergy prediction model based on multi-source feature interaction learning, named MFSynDCP, aiming to predict the synergistic effects of anti-tumor drug combinations. This model includes a graph aggregation module with an adaptive attention mechanism for learning drug interactions and a multi-source feature interaction learning controller for managing information transfer between different data sources, accommodating both drug and cell line features. Comparative studies with benchmark datasets demonstrate MFSynDCP's superiority over existing methods. Additionally, its adaptive attention mechanism graph aggregation module identifies drug chemical substructures crucial to the synergy mechanism. Overall, MFSynDCP is a robust tool for predicting synergistic drug combinations. The source code is available from GitHub at https://github.com/kkioplkg/MFSynDCP .


Benchmarking , Simulation Training , Drug Combinations , Drug Therapy, Combination , Cell Line
4.
Med Image Anal ; 95: 103163, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38626665

Large-scale digital whole slide image (WSI) datasets analysis have gained significant attention in computer-aided cancer diagnosis. Content-based histopathological image retrieval (CBHIR) is a technique that searches a large database for data samples matching input objects in both details and semantics, offering relevant diagnostic information to pathologists. However, the current methods are limited by the difficulty of gigapixels, the variable size of WSIs, and the dependence on manual annotations. In this work, we propose a novel histopathology language-image representation learning framework for fine-grained digital pathology cross-modal retrieval, which utilizes paired diagnosis reports to learn fine-grained semantics from the WSI. An anchor-based WSI encoder is built to extract hierarchical region features and a prompt-based text encoder is introduced to learn fine-grained semantics from the diagnosis reports. The proposed framework is trained with a multivariate cross-modal loss function to learn semantic information from the diagnosis report at both the instance level and region level. After training, it can perform four types of retrieval tasks based on the multi-modal database to support diagnostic requirements. We conducted experiments on an in-house dataset and a public dataset to evaluate the proposed method. Extensive experiments have demonstrated the effectiveness of the proposed method and its advantages to the present histopathology retrieval methods. The code is available at https://github.com/hudingyi/FGCR.

5.
J Infect Dev Ctries ; 18(3): 464-472, 2024 Mar 31.
Article En | MEDLINE | ID: mdl-38635624

Paragonimiasis is a common zoonotic parasitic disease. The retinoic acid-inducible gene I (RIG-I) signaling is very important for the host to recognize invading pathogens (especially viruses and bacteria). However, the role of RIG-I signaling in the early stages of P. proliferus infection remains unclear. Therefore, in this study, Sprague-Dawley (SD) rat models with lung damage caused by P. proliferus were established. Experimental methods including Enzyme-linked Immuno Sorbent Assay (ELISA), real-time fluorescent quantitative polymerase chain reaction (PCR), western blotting, and hematoxylin and eosin (HE) staining were used to explore the mechanisms of lung injury caused by P. proliferus. As a result, the expression of the mRNA and proteins of RIG-I signal-related key target molecules, including RIG-I, tumor necrosis factor (TNF) receptor associated factor 6 (TRAF6), interferon regulatory Factor 7 (IRF7), IPS-1, and downstream C-X-C chemokine ligand 10 (CXCL10), were significantly up-regulated immediately after infection, peaked at 3 or 7 days, and showed a downward trend on after 14 days. The levels of pro-inflammatory cytokines interleukin-1 (IL-1), interferon (IFN)-α, -ß, and -γ, which represent type 1 immune response, gradually increased and reached a peak by 14 days, which was consistent with the changes in the degree of inflammatory damage observed under HE staining of lung tissues. In conclusion, RIG-I signaling is activated in the early stage (before 14 days) of P. proliferus infection, it is inferred that the lung injury of the host may be related to the activation of RIG-I like signaling to induce type I immune response.


Lung Injury , Paragonimiasis , Paragonimus , Animals , Rats , DEAD Box Protein 58 , Rats, Sprague-Dawley , Interferon-alpha , Immunity , Paragonimus/metabolism , RNA Helicases
6.
Brief Bioinform ; 25(3)2024 Mar 27.
Article En | MEDLINE | ID: mdl-38670158

Despite the widespread use of ionizable lipid nanoparticles (LNPs) in clinical applications for messenger RNA (mRNA) delivery, the mRNA drug delivery system faces an efficient challenge in the screening of LNPs. Traditional screening methods often require a substantial amount of experimental time and incur high research and development costs. To accelerate the early development stage of LNPs, we propose TransLNP, a transformer-based transfection prediction model designed to aid in the selection of LNPs for mRNA drug delivery systems. TransLNP uses two types of molecular information to perceive the relationship between structure and transfection efficiency: coarse-grained atomic sequence information and fine-grained atomic spatial relationship information. Due to the scarcity of existing LNPs experimental data, we find that pretraining the molecular model is crucial for better understanding the task of predicting LNPs properties, which is achieved through reconstructing atomic 3D coordinates and masking atom predictions. In addition, the issue of data imbalance is particularly prominent in the real-world exploration of LNPs. We introduce the BalMol block to solve this problem by smoothing the distribution of labels and molecular features. Our approach outperforms state-of-the-art works in transfection property prediction under both random and scaffold data splitting. Additionally, we establish a relationship between molecular structural similarity and transfection differences, selecting 4267 pairs of molecular transfection cliffs, which are pairs of molecules that exhibit high structural similarity but significant differences in transfection efficiency, thereby revealing the primary source of prediction errors. The code, model and data are made publicly available at https://github.com/wklix/TransLNP.


Lipids , Liposomes , Nanoparticles , RNA, Messenger , Nanoparticles/chemistry , RNA, Messenger/genetics , RNA, Messenger/chemistry , Lipids/chemistry , Transfection , Humans , Models, Molecular , Drug Delivery Systems
7.
Sci Total Environ ; 928: 172518, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38631637

Microorganisms play important roles in the biogeochemical cycles of lake sediment. However, the integrated metabolic mechanisms governing nitrogen (N) and sulfur (S) cycling in eutrophic lakes remain poorly understood. Here, metagenomic analysis of field and bioreactor enriched sediment samples from a typical eutrophic lake were applied to elucidate the metabolic coupling of N and S cycling. Our results showed significant diverse genes involved in the pathways of dissimilatory sulfur metabolism, denitrification and dissimilatory nitrate reduction to ammonium (DNRA). The N and S associated functional genes and microbial groups generally showed significant correlation with the concentrations of NH4+, NO2- and SO42, while with relatively low effects from other environmental factors. The gene-based co-occurrence network indicated clear cooperative interactions between N and S cycling in the sediment. Additionally, our analysis identified key metabolic processes, including the coupled dissimilatory sulfur oxidation (DSO) and DNRA as well as the association of thiosulfate oxidation complex (SOX systems) with denitrification pathway. However, the enriched N removal microorganisms in the bioreactor ecosystem demonstrated an additional electron donor, incorporating both the SOX systems and DSO processes. Metagenome-assembled genomes-based ecological model indicated that carbohydrate metabolism is the key linking factor for the coupling of N and S cycling. Our findings uncover the coupling mechanisms of microbial N and S metabolism, involving both inorganic and organic respiration pathways in lake sediment. This study will enhance our understanding of coupled biogeochemical cycles in lake ecosystems.


Geologic Sediments , Lakes , Microbiota , Nitrogen , Sulfur , Lakes/microbiology , Sulfur/metabolism , Geologic Sediments/microbiology , Nitrogen/metabolism , Eutrophication , Nitrogen Cycle , Denitrification
8.
Int J Biol Macromol ; 265(Pt 2): 131156, 2024 Apr.
Article En | MEDLINE | ID: mdl-38537862

PTEN-induced putative kinase 1 (PINK1) is a key regulator of mitophagy, however, the relevant information remains poorly understood on aquatic animals. Here, a PINK1 gene was cloned, characterized and functionally studied in yellow catfish. PINK1 encoded a protein containing 570 amino acids, 2 functional domains. High fat (15.66%) fed fish showed a downregulation trend of liver PINK1 expression than that of normal fat (10.14%) group, and was reversed by the addition of Zn. In the in vitro study, high fat (HF) can increase lipid deposition and decrease by addition Zn (HFZ) in hepatocytes, whereas above phenomena reversed by overexpression/interference of PINK1, respectively. In addition, the addition of Zn can significantly affect mitochondrial activity, increase mitophagy, and improve the antioxidant activity of hepatocytes. Together, these findings illustrated that yellow catfish PINK1 is conserve, and it participated in mitochondria control of fish. These findings indicate Zn could alleviate high fat-induced hepatic lipid deposition of fish by activating PINK1-mediated mitophagy and provide basis for further exploring new approach for decreasing lipid deposition in fish products during aquaculture.


Catfishes , Zinc , Animals , Zinc/pharmacology , Zinc/metabolism , Lipid Metabolism , Catfishes/genetics , Catfishes/metabolism , Liver/metabolism , Protein Kinases/metabolism , Lipids
9.
Microorganisms ; 12(3)2024 Mar 05.
Article En | MEDLINE | ID: mdl-38543570

Salmonella enterica serovar Indiana (S. Indiana) is among the most prevalent serovars of Salmonella and is closely associated with foodborne diseases worldwide. In this study, we combined a recombinase polymerase amplification (RPA) technique with clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated (Cas) protein Cas12b (CRISPR/Cas12b)-based biosensing in a one-pot platform to develop a novel one-step identification method for S. Indiana infection diagnosis. The entire RPA-CRISPR/Cas12b reaction can be completed at 41 °C within 1 h without the need for specific instruments. The optimal concentrations of Cas12b and single-guide RNA (sgRNA) for the reaction were the same at 250 nM. The single-stranded DNA (ssDNA) reporter 8C-FQ (5'-/6-FAM/CCCCCCCC/BHQ1/-3') presented the best performance in the reaction compared with the other reporters. The limit of detection (LoD) of the RPA-CRISPR/Cas12b assay was 14.4 copies per reaction. As for specificity, we successfully identified four S. Indiana strains among twenty-two Salmonella strains without any false-positive results, presenting 100% accuracy for S. Indiana, and no cross-reactions were observed in eight other pathogens. Moreover, a total of 109 chicken carcasses were classified by the S. Indiana RPA-CRISPR assay and PCR methods from three processing points, including 43 post-shedding, 35 post-evisceration, and 31 post-chilling. There were 17 S. Indiana-positive samples identified during the whole processing step, consisting of nine post-shedding, five post-evisceration, and three post-chilling. The corresponding S. Indiana-positive rates of post-shedding, post-evisceration, and post-chilling were 20.93% (9/43), 14.29% (5/35), and 9.68% (3/31), respectively. Results from the S. Indiana one-step RPA-CRISPR/Cas12b assay were totally in agreement with those obtained using a traditional culture method, demonstrating 100% agreement with no false-positive or false-negative results observed. Altogether, the RPA-CRISPR/Cas12b assay developed in this study represents a promising, accurate, and simple diagnostic tool for S. Indiana detection.

10.
Sci Total Environ ; 924: 171730, 2024 May 10.
Article En | MEDLINE | ID: mdl-38492603

Eutrophication and its resulting harmful algal blooms greatly reduce the ecosystem services of natural waters. The use of modified clay materials to assist the phytoremediation of eutrophic water is a promising technique. In this study, ferric chloride and calcium hydroxide were respectively loaded on red soil for algal flocculation and phosphorus inactivation. A two-by-two factorial mesocosm experiment with and without the application of ferric- and calcium- loaded red soil (FA), and with and without planting the submerged macrophyte Vallisneria natans was conducted for the in-situ repair of eutrophic water and sediment. Furthermore, field enclosure application was carried out to verify the feasibility of the technology. At the end of the mesocosm experiment, the total phosphorus, total nitrogen, and ammonia nitrogen concentrations in water were reduced by 81.8 %, 63.3 %, and 62.0 %, respectively, and orthophosphate phosphorus concentration in the sediment-water interface decreased by 90.2 % in the FA + V. natans group compared with those in the control group. The concentration and proportion of chlorophyll-a in cyanobacteria decreased by 89.8 % and 71.2 %, respectively, in the FA + V. natans group. The content of active phosphorus in V. natans decreased and that of inert phosphorus increased in the FA + V. natans group, compared with those in the V. natans alone group, thus may reducing the risk of phosphorus release after decomposing of V. natans. The sediment bacterial diversity index did not change significantly among treatments. Field enclosure application have also been successful, with chlorophyll-a concentration in the water of treated enclosure decreased from above 200 µg/L to below 10 µg/L, and phosphorus concentration in the water decreased from >0.6 mg/L to <0.02 mg/L. These results demonstrated that the FA in combination with submerged macrophyte planting had great potential for the in-situ remediation of eutrophic water, especially those with severe algal blooms.


Ecosystem , Lakes , Calcium , Soil , Eutrophication , Harmful Algal Bloom , Water , Chlorophyll , Chlorophyll A , Iron , Iron, Dietary , Phosphorus , Nitrogen/analysis
11.
PeerJ Comput Sci ; 10: e1751, 2024.
Article En | MEDLINE | ID: mdl-38435550

Liver occupying lesions can profoundly impact an individual's health and well-being. To assist physicians in the diagnosis and treatment of abnormal areas in the liver, we propose a novel network named SEU2-Net by introducing the channel attention mechanism into U2-Net for accurate and automatic liver occupying lesion segmentation. We design the Residual U-block with Squeeze-and-Excitation (SE-RSU), which is to add the Squeeze-and-Excitation (SE) attention mechanism at the residual connections of the Residual U-blocks (RSU, the component unit of U2-Net). SEU2-Net not only retains the advantages of U2-Net in capturing contextual information at multiple scales, but can also adaptively recalibrate channel feature responses to emphasize useful feature information according to the channel attention mechanism. In addition, we present a new abdominal CT dataset for liver occupying lesion segmentation from Peking University First Hospital's clinical data (PUFH dataset). We evaluate the proposed method and compare it with eight deep learning networks on the PUFH and the Liver Tumor Segmentation Challenge (LiTS) datasets. The experimental results show that SEU2-Net has state-of-the-art performance and good robustness in liver occupying lesions segmentation.

12.
Genes (Basel) ; 15(3)2024 Mar 04.
Article En | MEDLINE | ID: mdl-38540393

Lipophagy is a selective autophagy that regulates lipid metabolism and reduces hepatic lipid deposition. However, the underlying mechanism has not been understood in fish. In this study, we used micronutrient zinc (Zn) as a regulator of autophagy and lipid metabolism and found that Ras-related protein 7 (rab7) was involved in Zn-induced lipophagy in hepatocytes of yellow catfish Pelteobagrus pelteobagrus. We then characterized the rab7 promoter and identified binding sites for a series of transcription factors, including Forkhead box O3 (FOXO3). Site mutation experiments showed that the -1358/-1369 bp FOXO3 binding site was responsible for Zn-induced transcriptional activation of rab7. Further studies showed that inhibition of rab7 significantly inhibited Zn-induced lipid degradation by lipophagy. Moreover, rab7 inhibitor also mitigated the Zn-induced increase of cpt1α and acadm expression. Our results suggested that Zn exerts its lipid-lowering effect partly through rab7-mediated lipophagy and FA ß-oxidation in hepatocytes. Overall, our findings provide novel insights into the FOXO3/rab7 axis in lipophagy regulation and enhance the understanding of lipid metabolism by micronutrient Zn, which may help to reduce excessive lipid accumulation in fish.


Catfishes , Zinc , Animals , Zinc/pharmacology , Lipid Metabolism/genetics , Catfishes/genetics , Catfishes/metabolism , Lipids , Autophagy/genetics , Micronutrients/metabolism
13.
Crit Rev Eukaryot Gene Expr ; 34(4): 33-44, 2024.
Article En | MEDLINE | ID: mdl-38505871

Acute myeloid leukemia (AML) is a highly heterogeneous disease. Exploring the pathogenesis of AML is still an important topic in the treatment of AML. The expression levels of miR-26b-5p and USP48 were measured by qRT-PCR. The expression levels of related proteins were detected by Western blot. Cell proliferation and apoptosis were detected by CCK-8 and flow cytometry, respectively. Coimmunoprecipitation was used to examine the interaction between USP48 and Wnt5a. Bioinformatics analysis showed that high levels of miR-26b-5p and low levels of USP48 were associated with poor prognosis in AML. miR-26b-5p can negatively regulate the expression of USP48. Downregulation of miR-26b-5p inhibited EMT, cell viability and proliferation of AML cells and accelerated apoptosis. Furthermore, the influence of miR-26b-5p inhibition and USP48 knockdown on AML progression could be reversed by a Wnt/ß-catenin signaling pathway inhibitor. This study revealed that miR-26b-5p regulates AML progression, possibly by targeting the USP48-mediated Wnt/ß-catenin molecular axis to affect AML cell biological behavior.


Leukemia, Myeloid, Acute , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Wnt Signaling Pathway/genetics , beta Catenin/genetics , Blotting, Western , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Cell Proliferation/genetics , Cell Line, Tumor , Apoptosis/genetics , Ubiquitin-Specific Proteases/metabolism
14.
Bioengineering (Basel) ; 11(3)2024 Feb 28.
Article En | MEDLINE | ID: mdl-38534505

OBJECTIVE: Chronic kidney disease (CKD) is one of the most common diseases worldwide. The increasing prevalence and incidence of CKD have contributed to the critical problem of high medical costs. Due to stressful environments, aircrew members may have a high risk of renal dysfunction. A better strategy to prevent CKD progression in Air Force personnel would be to diagnosis CKD at an early stage. Since few studies have been conducted in Taiwan to examine the long-term trends in early CKD in Air Force aircrew members, this study is highly important. We investigated the prevalence of CKD and established a predictive model of disease variation among aircrew members. MATERIALS AND METHODS: In this retrospective study, we included all subjects who had received physical examinations at a military hospital from 2004 to 2010 and who could be tracked for four years. The Abbreviated Modification of Diet in Renal Disease Formula (aMDRD) was used to estimate the glomerular filtration rate (GFR) and was combined with the National Kidney Foundation/ Kidney Disease Outcomes Quality Initiative (NKF-K/DOQI) to identify CKD patients. RESULTS: A total of 212 aircrew members were assessed. The results showed that the prevalence of CKD was 3.8%, 9.4%, 9.0%, and 9.4% in each of the four years. According to the logistic regression analysis, abnormal urobilinogen levels, ketones, and white blood cell (WBC) counts in urine and a positive urine occult blood test increased the risk of CKD. A positive urine occult blood test can be used to predict the future risk of CKD. Moreover, the generalized estimating equation (GEE) model showed that a greater risk of CKD with increased examination time, age and seniority had a negative effect. In conclusion, abnormal urobilinogen levels, ketones, and urine WBC counts in urine as well as a positive urine occult blood test might serve as independent predictors for CKD. CONCLUSION: In the future, we can focus not only on annual physical examinations but also on simple and accurate examinations, such as urine occult blood testing, to determine the risk of CKD and prevent its progression in our aircrew members.

15.
World J Clin Oncol ; 15(2): 302-316, 2024 Feb 24.
Article En | MEDLINE | ID: mdl-38455139

BACKGROUND: Bladder cancer (BC) is the most common urological tumor. It has a high recurrence rate, displays tutor heterogeneity, and resists chemotherapy. Furthermore, the long-term survival rate of BC patients has remained unchanged for decades, which seriously affects the quality of patient survival. To improve the survival rate and prognosis of BC patients, it is necessary to explore the molecular mechanisms of BC development and progression and identify targets for treatment and intervention. Transmembrane 9 superfamily member 1 (TM9SF1), also known as MP70 and HMP70, is a member of a family of nine transmembrane superfamily proteins, which was first identified in 1997. TM9SF1 can be expressed in BC, but its biological function and mechanism in BC are not clear. AIM: To investigate the biological function and mechanism of TM9SF1 in BC. METHODS: Cells at 60%-80% confluence were transfected with lentiviral vectors for 48-72 h to achieve stable TM9SF1 overexpression or silencing in three BC cell lines (5637, T24, and UM-UC-3). The effect of TM9SF1 on the biological behavior of BC cells was then investigated through CCK8, wound-healing assay, transwell assay, and flow cytometry. RESULTS: Overexpression of TM9SF1 increased the in vitro proliferation, migration, and invasion of BC cells by promoting the entry of BC cells into the G2/M phase. Silencing of TM9SF1 inhibited in vitro proliferation, migration, and invasion of BC cells and blocked BC cells in the G1 phase. CONCLUSION: TM9SF1 may be an oncogene in BC.

16.
J Environ Manage ; 353: 120283, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38330842

The recovery of rare earth elements (REEs) including neodymium (Nd) and dysprosium (Dy) from NdFeB permanent magnets has become one of the main ways to solve the increased demand for rare earth. Herein, n-dodecyl phosphate (DPPA) was used for the first time as the adsorption functional group donor, sodium alginate as the substrate, and calcium chloride solution as the reactive solvent, a hybrid hydrogel adsorbent DPPA/CaALG was synthesized by sol-gel method for application in the adsorption and separation of Nd and Dy from the Co-Nd-Dy ternary system. SEM-EDS, and N2 adsorption-desorption analysis showed the successful preparation of DDPA/CaALG with mesoporous structure. Batch experiments showed the superiority of the hybrid hydrogel for the good selective adsorption of Nd and Dy, such as large adsorption capacity (Nd: 162.5 mg/g, Dy: 183.5 mg/g), and no adsorption for Co. FT-IR, XPS showed that PO and P-O groups are involved in the adsorption process of Nd and Dy as electron acceptors, where the ion exchange of P-OH is dominant. Furthermore, the chemical properties of ligands and complexes were analyzed by Density Functional Theory (DFT) calculations and revealed their adsorption behaviors as well as the competition between different metal ions.


Metals, Rare Earth , Neodymium , Dysprosium , Hydrogels , Adsorption , Alginates , Spectroscopy, Fourier Transform Infrared , Phosphates
17.
Anal Methods ; 16(7): 971-978, 2024 02 15.
Article En | MEDLINE | ID: mdl-38299435

Virus-based human infectious diseases have a significant negative impact on people's health and social development. The need for quick, accurate, and early viral infection detection in preventive medicine is expanding. A microfluidic control is particularly suitable for point-of-care-testing virus diagnosis due to its advantages of low sample consumption, quick detection speed, simple operation, multi-functional integration, small size, and easy portability. It is also thought to have significant development potential and a wide range of application prospects in the research on virus detection technology. In an effort to aid researchers in creating novel microfluidic tools for virus detection, this review highlights recent developments of droplet-based microfluidics in virus detection research and also discusses the challenges and opportunities for rapid virus detection.


Communicable Diseases , Virus Diseases , Humans , Microfluidics , Communicable Diseases/diagnosis , Virus Diseases/diagnosis , Point-of-Care Testing
18.
Heliyon ; 10(2): e24394, 2024 Jan 30.
Article En | MEDLINE | ID: mdl-38312638

SIVA-1 has been shown to affect apoptotic processes in various different cell lines, and SIVA-1 significantly contributes to the decreased responsiveness of cancer cells to some chemotherapy agents. However, whether SIVA-1 has potential application in gastric cancer remains unknown. Therefore, the objective of this investigation was to clarify the distinct function of SIVA-1 in chemotherapeutic drug resistance within a living murine model with gastric malignancy, and initially elucidate the underlying mechanisms. In an established multidrug-resistant gastric cancer xenograft mouse model, lentivirus, named Lv-SIVA-1, was injected into xenograft tumors, and increased the mRNA and protein expression of endogenous SIVA-1 in tumors. Immunohistochemical assays of xenograft tumor showed that SIVA-1 was significantly upregulated, and the protein expression levels of SIVA-1 were highly increased, as detected by Western blotting. In addition, we detected the role of SIVA-1 in cell proliferation and cell apoptosis in gastric cancer cells by TUNEL and found that SIVA-1 decreased tumor cell apoptosis and promoted tumor growth in vivo. Using a TMT assay between tumor tissues of experimental and control groups, differentially expressed proteins were examined and three potential biomarkers of multidrug resistance (ARF, MDM2, and p53) were screened. We further investigated the molecular mechanism by which SIVA-1 played an efficient role against chemotherapies and found that overexpressed SIVA-1 leads to increased ARF and MDM2 expression and suppressed expression of p53 in tumor tissue. In conclusion, SIVA-1 plays a significant role in the multidrug resistance of gastric tumors. In addition, overexpressed SIVA-1 positively regulates cell proliferation, adjusts cycle progression, and reduces the response to drug treatment for gastric cancer in an ARF/MDM2/p53-dependent manner. This novel research provides a basis for chemical management of gastric cancer through regulation of SIVA-1 expression.

19.
J Hazard Mater ; 467: 133741, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38341887

Radioactive strontium (90Sr) is considered as one of the most dangerous radionuclides due to its high biochemical toxicity. For the efficient and selective separation of Sr from acidic environments, a novel functional adsorbent CEPA@SBA-15-APTES was prepared in this work through the phosphorylation of amino-modified mesoporous silica with organic content of approximately 20 wt%. CEPA@SBA-15-APTES was characterized by TEM, SEM, EDS, TG-DSC, BET, FTIR, and XPS techniques, revealing its characteristics of an ordered hexagonal lattice-like structure and rich functional groups. The experimental results demonstrated that the adsorbent exhibited good adsorption capacity for Sr over a wide acidity range (i.e., from 10-10 M to 4 M HNO3). The adsorption equilibriums of Sr by CEPA@SBA-15-APTES in 10-6 M and 3 M HNO3 solutions were reached within 30 and 5 min, respectively, and the adsorption capacities at 318 K were 112.6 and 71.8 mg/g, respectively. Furthermore, by combining the experimental and characterization results, we found that the adsorption mechanism consisted of ion exchange between Sr(II) and H+ (in P-OH) in the 10-6 M HNO3 solution and coordination between the Sr(II) and oxygen-containing (CO and P = O) functional groups in the 3 M HNO3 solution.

20.
BMC Oral Health ; 24(1): 156, 2024 Jan 31.
Article En | MEDLINE | ID: mdl-38297336

INTRODUCTION: A prospective observational study was modified to assess the efficacy of surgery alone for the treatment of locally advanced oral squamous cell carcinoma. (LA-OSCC) MATERIALS AND METHODS: This prospective, single-institution, single-arm study involved 174 patients who underwent major surgery for LA-OSCC. Participating patients did not receive postoperative radiation. After initial curative treatment, patients were routinely monitored via clinical examination and imaging. The follow-up period was 3-70 months. Tumour recurrence and death were considered as the Clinical End Point in Research. RESULTS: The 5-year overall survival (OS), disease-free survival (DFS), and locoregional control rates for 174 patients were 66.7% (95% confidence interval [CI], 59.8 to 73.6), 66.1% (95% CI, 59.2 to 73.0), and 82.4% (95% CI, 76.5 to 88.3), respectively. CONCLUSION: A study of patients with LA-OSCC treated with surgery alone may have the optimal therapeutic impact for LA-OSCC, as evidenced by solid data for our next RCT trial. This conclusion still needs to be validated in higher-level RCTs.


Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Carcinoma, Squamous Cell/surgery , Carcinoma, Squamous Cell/pathology , Mouth Neoplasms/surgery , Squamous Cell Carcinoma of Head and Neck , Prospective Studies , Neoplasm Recurrence, Local/pathology
...