Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
J Clin Med ; 9(2)2020 Jan 25.
Article En | MEDLINE | ID: mdl-31991736

BACKGROUND: Mycobacterium tuberculosis (Mtb) is an intracellular pathogen that infects and persists in macrophages. This study aimed to investigate the effects of long-term fenofibrate treatment in patients with tuberculosis (TB), and the intracellular viability of Mtb in human macrophages. METHODS: Epidemiological data from the National Health Insurance Research Database of Taiwan were used to present outcomes of TB patients treated with fenofibrate. In the laboratory, we assessed Mtb infection in macrophages treated with or without fenofibrate. Mtb growth, lipid accumulation in macrophages, and expression of transcriptional genes were examined. RESULTS: During 11 years of follow-up, TB patients treated with fenofibrate presented a higher risk of mortality. Longer duration of fenofibrate use was associated with a significantly higher risk of mortality. Treatment with fenofibrate significantly increased the number of bacilli in human macrophages in vitro. Fenofibrate did not reduce, but induced an increasing trend in the intracellular lipid content of macrophages. In addition, dormant genes of Mtb, icl1, tgs1, and devR, were markedly upregulated in response to fenofibrate treatment. Our results suggest that fenofibrate may facilitate intracellular Mtb persistence. CONCLUSIONS: Our data shows that long-term treatment with fenofibrate in TB patients is associated with a higher mortality. The underlying mechanisms may partly be explained by the upregulation of Mtb genes involved in lipid metabolism, enhanced intracellular growth of Mtb, and the ability of Mtb to sustain a nutrient-rich reservoir in human macrophages, observed during treatment with fenofibrate.

2.
Tissue Eng Part C Methods ; 20(1): 1-10, 2014 Jan.
Article En | MEDLINE | ID: mdl-23675702

Low-back pain caused by intervertebral disc degeneration could be recovered by the regeneration of the nucleus pulposus (NP). This study aimed to establish a chondrogenic recovery model with promising a human NP (hNP) cell line, an immortalized hNP (ihNP), which could be a screening platform to identify regenerative drugs. The ihNP cells were created from primary human NP cells transfected with a retroviral vector-driven HPV16 E6/E7. Growth properties and characteristics of ihNP were evaluated by comparing with parental NP cells. Successful immortalization of ihNP cells stably expressed HPV 16 E6/E7 mRNA. The doubling time of ihNP was shortened to 53.16±2.63 h compared with parental hNP-P1. Cell cycle regulators, including p53, p21, and pRB were downregulated compared to parental hNP-P1. The in vivo neoplastic forming assay also demonstrated that the ihNP was nontumorigenic. After 25 generations of cell cultures, the ihNP cells, yet stably expressed chondrogenic genes, including (SOX9), type II collagen (Col II), aggrecan, decorin, biglycan, and versican. Higher expressions of chondrogenic proteins, including Col II, phosphorylated SOX9 (p-SOX9), and CD44 were also determined. Under the stressful inflammatory conditions induced by lipopolysaccharides (LPS), the regenerative and anti-inflammatory potentials of ihNP in two-dimensional culture with the presence of platelet-rich plasma (PRP) were evaluated by reverse transcriptase polymerase chain reaction. PRP showed significant effects on restoring diminished chondrogenic markers and deleterious inflammatory responses induced by LPS in ihNP. The therapeutic potentials of ihNP in three-dimensional neocartilage model could also be exerted by PRP using histological evaluation and immunological staining. Hence, the established ihNP cells can provide a chondrogenic recovery model as a regenerative drug screening tool for further regenerative drug discovery and development.


Cell Culture Techniques/methods , Intervertebral Disc/cytology , Tissue Engineering/methods , Adult , Animals , Carcinogenesis/metabolism , Carcinogenesis/pathology , Cell Cycle , Cell Line, Transformed , Cell Proliferation , Cell Shape , Cellular Senescence , Chondrogenesis/genetics , Gene Expression Profiling , Humans , Intervertebral Disc/physiology , Male , Mice , Mice, Inbred NOD , Models, Biological , Regeneration
...