Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biotechnol ; 388: 11-23, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38614441

RESUMEN

Acids play a crucial role in enhancing the flavor of strong-aroma Baijiu, and among them, caproic acid holds significant importance in determining the flavor of the final product. However, the metabolic synthesis of caproic acid during the production process of Baijiu has received limited attention, resulting in fluctuations in caproic acid content among fermentation batches and generating production instability. Acid-producing bacteria found in the cellar mud are the primary microorganisms responsible for caproic acid synthesis, but there is a lack of research on the related microbial resources and their metabolic properties. Therefore, it is essential to identify and investigate these acid-producing microorganisms from cellar mud to ensure stable caproic acid synthesis. In this study, a unique strain was isolated from the cellar mud, exhibiting a 98.12 % similarity in its 16 S rRNA sequence and an average nucleotide identity of 79.57 % with the reference specie, together with the DNA-DNA hybridization of 23.20 % similarity, confirming the distinct species boundaries. The strain was able to produce 1.22 ± 0.55 g/L caproic acid from glucose. Through genome sequencing, annotation, and bioinformatics analysis, the complete pathway of caproic acid synthesis from glucose was elucidated, and the catalytic mechanism of the key thiolase for caproic acid synthesis was investigated. These findings provide useful fundamental data for revealing the metabolic properties of caproic acid-producing bacteria found in cellar mud.


Asunto(s)
Caproatos , Glucosa , Glucosa/metabolismo , Caproatos/metabolismo , ARN Ribosómico 16S/genética , Fermentación , Filogenia , Genoma Bacteriano/genética
2.
3 Biotech ; 13(6): 205, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37223001

RESUMEN

Acid-producing bacteria are one kind of crucial species for Baijiu fermentation. The strain BJN0003 with the ability of producing butyric acid was isolated from the cellar mud of Baijiu, and the 16S rRNA gene sequence similarity was 94.2% to its most closely related type species Caproicibacterium lactiferaments JNU-WLY1368T, less than the threshold value of 94.5% for distinguishing genera. Furthermore, the genome of BJN0003 showed a length of 2,458,513 bp and a DNA G + C content of 43.3% through high throughput sequence. BJN0003 exhibited whole-genome average nucleotide identity value of 68.9% to the most closely related species, while the whole-genome digital DNA-DNA hybridization value was only 23.1%, which were both below the delineation thresholds of species. These results indicated BJN0003 could represent a potential novel species of a new genus of the family Oscillospiraceae, and was proposed the name as Butyriproducens baijiuensis. In addition, gene annotation and metabolic analysis showed that BJN0003 harbored the metabolic pathway of converting glucose to butyric acid. The discovery of the new species provided bacterial resource for Baijiu production and the revealing of genetic characteristics would promote the investigation of acid synthesis during Baijiu manufacturing process. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03624-w.

3.
Foods ; 12(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36766173

RESUMEN

The solid-state fermentation of Baijiu is complicated by the co-fermentation of many microorganisms. The instability of the composition and abundance of the microorganisms in the fermentation process leads to fluctuations of product quality, which is one of the bottleneck problems faced by the Strong-flavor Baijiu industry. In this study, we established a combination of functional microorganisms for the stable fermentation of the main flavor compounds of Baijiu, including medium and long-chain fatty acid ethyl esters such as hexanoic acid, ethyl ester; butanoic acid, ethyl ester; octanoic acid, ethyl ester; acetic acid, ethyl ester; 9,12-octadecadienoic acid, ethyl ester; and decanoic acid, ethyl ester in the fermented grains. Our study investigated the effects of microbial combinations on the fermentation from three aspects: microbial composition, microbial interactions, and microbial association with flavor compounds. The results showed that the added functional microorganisms (Lactobacillus, Clostridium, Caproiciproducens, Saccharomyces, and Aspergillus) became the dominant species in the fermentation system and formed positive interactions with other microorganisms, while the negative interactions between microorganisms were significantly reduced in the fermentation systems that contained both Daqu and functional microorganisms. The redundancy analysis showed that the functional microorganisms (Lactobacillus, Saccharomyces, Clostridium, Cloacibacterium, Chaenothecopsis, Anaerosporobacter, and Sporolactobacillus) showed strong positive correlations with the main flavor compounds (hexanoic acid, ethyl ester; lactic acid, ethyl ester; butanoic acid, ethyl ester; acetic acid, ethyl ester; and octanoic acid, ethyl ester). These results indicated that it was feasible to produce Baijiu with a functional microbial combination, and that this could promote stable Baijiu production.

4.
Foods ; 12(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36613423

RESUMEN

Sauce-flavor Baijiu is representative of solid-state fermented Baijiu. It is significant to deeply reveal the dynamic changes of microorganisms in the manufacturing process and their impact on the formation of flavor chemicals correlated with the quality of Baijiu. Sauce-flavor Baijiu manufacturing process can be divided into seven rounds, from which seven kinds of base Baijius are produced. The quality of base Baijiu in the third round is significantly better than that in the first and second rounds, but the mystery behind the phenomenon has not yet been revealed. Based on high-throughput sequencing and flavor analysis of fermented grains, and correlation analysis, the concentrations of flavor chemicals in the third round of fermented grains were enhanced, including esters hexanoic acid, ethyl ester; octanoic acid, ethyl ester; decanoic acid, ethyl ester; dodecanoic acid, ethyl ester; phenylacetic acid, ethyl ester; 3-(methylthio)-propionic acid ethyl ester; acetic acid, phenylethyl ester; hexanoic acid, butyl ester, and other flavor chemicals closely related to the flavor of sauce-flavor Baijiu, such as tetramethylpyrazine. The changes in flavor chemicals should be an important reason for the quality improvement of the third round of base Baijiu. Correlation analysis showed that ester synthesis was promoted by the bacteria genus Lactobacillus and many low abundances of fungal genera, and these low abundances of fungal genera also had important contributions to the production of tetramethylpyrazine. Meanwhile, the degrading metabolic pathway of tetramethylpyrazine was investigated, and the possible microorganisms were correlated. These results clarified the base Baijiu quality improvement of the third round and helped to provide a theoretical basis for improving base Baijiu quality.

5.
3 Biotech ; 12(9): 203, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35935542

RESUMEN

A novel strain, designated BJN0001, was isolated from the cellar mud of Chinese strong-flavor baijiu. The complete genome of strain BJN0001 was 2,688,791 bp and annotated with 2610 genes. Whole-genome similarity metrics such as average nucleotide identity (ANI) of BJN0001 with reference genomes reveals clear species boundaries of < 95% ANI value for species. The DNA-DNA hybridization (DDH) values of BJN0001 with the type species were all lower than 70% DDH value for species. Based on these results, the strain BJN0001 was considered a potentially new species of the genus Clostridium. Meanwhile, the fermentation characteristics indicated that the strain had the capability to convert glucose to ethanol, acetic acid and butyric acid, which could provide basic data for revealing its function in baijiu fermentation. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03271-7.

6.
J Chromatogr A ; 1681: 463419, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36044783

RESUMEN

Developing functional fiber coating for selective solid phase microextraction (SPME) of trace pollutants is critical in environmental analysis. Herein, the novel covalent organic frameworks (COFs) with three-dimensional (3D) frameworks and multiple interactions were designed and presented for the selective SPME of polychlorinated biphenyls (PCBs). Using tetra (p-aminophenyl) methane (TAM) and 1,3,5-triformylphloroglucinol (Tp) as the monomers, the 3D TpTAM-COF was synthesized and possessed a large specific surface area, high thermal stability, and spatial selectivity toward PCBs. Characterizations such as morphology, XPS, XRD, thermal stability, and enhancement factors (EFs) were studied. Multiple interactions including π-π conjugation, hydrophobic interaction, and selectivity toward non-planar structure were adopted, which resulted in a superior adsorption affinity toward PCBs on TpTAM-COF. Under the optimal conditions, the spatial selectivity toward PCBs, organic analogs (o-dichlorobenzene, biphenyl) and polycyclic aromatic hydrocarbons (naphthalene, pyrene, and anthracene)) was achieved. Efficient and selective adsorption of fifteen PCBs was fulfilled with the highest EF up to 10305. Using the HS-SPME-GC-MS method, the recoveries of PCBs in the river water and soil samples were determined to be 84.8 ± 7.8% ∼ 117.2 ± 8.5% (n = 3) and 84.4 ± 8.6% ∼ 114.7 ± 7.6% (n = 3), respectively. Compared with most commercial SPME fibers and other COFs-based fibers, the resultant TpTAM-COF-coated fibers possessed higher selectivity and EFs of PCBs. It proposed a promising approach for selective SPME of trace PCBs by multiple interactions in the steric structure of 3D COFs.


Asunto(s)
Contaminantes Ambientales , Estructuras Metalorgánicas , Bifenilos Policlorados , Hidrocarburos Policíclicos Aromáticos , Antracenos/análisis , Contaminantes Ambientales/análisis , Estructuras Metalorgánicas/química , Metano , Naftalenos/análisis , Bifenilos Policlorados/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Pirenos , Suelo/química , Microextracción en Fase Sólida/métodos , Agua/química
7.
Environ Pollut ; 273: 116461, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33485001

RESUMEN

Phthalate ester pollution in the environment and food chain is frequently reported. Microbial treatment is a green and efficient method for solving this problem. The isolation and systematic investigation of microorganisms generally recognized as safe (GRAS) will provide useful resources. A GRAS Bacillus subtilis strain, BJQ0005, was isolated from Baijiu fermentation starter and efficiently degraded phthalate esters (PAEs). The half-lives for di-isobutyl phthalate, di-butyl phthalate and di-(2-ethylhexyl) phthalate were 3.93, 4.28, and 25.49 h, respectively, from the initial amount of 10 mg per 10 mL reaction mixture, which are records using wild-type strains. Genome sequencing and metabolic intermediate analysis generated the whole metabolic pathway. Eighteen enzymes from the α/ß hydrolase family were expressed. Enzymes GTW28_09400 and GTW28_13725 were capable of single ester bond hydrolysis of PAEs, while GTW28_17760 hydrolyzed di-ester bonds of PAEs. Using molecular docking, a possible mechanism affecting enzymatic ester bond hydrolysis of mono-butyl phthalate was proposed of GTW28_17760. The carboxyl group generated by the first hydrolysis step interacted with histidine in the catalytic active center, which negatively affected enzymatic hydrolysis. Isolation and systematic investigation of the PAE degradation characteristics of B. subtilis will promote the green and safe treatment of PAEs in the environment and food industry.

8.
Front Microbiol ; 12: 820380, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35265050

RESUMEN

Fatty acid ethyl esters are important flavor chemicals in strong-flavor baijiu. Microorganisms are the main contributors to ester synthesis during baijiu manufacture. However, the ester synthesis was unstable between batches. This was owing to a limited knowledge of the mechanisms for ester synthesis by microorganisms. In this work, a fatty acid ethyl ester synthesizing Aspergillus niger strain CGMCC (China General Microbiological Culture Collection) 3.4309 was identified. The conversion ratios of ethyl valerate, ethyl caproate, ethyl caprylate, and ethyl caprate were 7.87, 29.20, 94.80, and 85.20%, respectively, under the optimized conditions. A comparison of transcriptomes under the initial and optimized ester synthetic conditions indicated that 23 genes were upregulated in transcription level and encoded enzymes with potential abilities for ester synthesis. Eleven of the enzymes were expressed, and three of them, numbered An605, An1097, and An3131, showed the ability to catalyze fatty acid ethyl ester synthesis under aqueous phase, with capric acid as the preferred substrate. The possible enzymatic catalytic mechanism was proposed based on homology modeling and molecular docking. This study reported for the first time that A. niger showed the ability to efficiently catalyze the synthesis of short- and medium-chain fatty acid ethyl esters in aqueous phase, identified the key enzymes, and analyzed the basic enzymatic properties. This is helpful to promote the application of related microorganisms and enzyme resources in the baijiu industry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...