Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomed Mater ; 19(5)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39094612

RESUMEN

The therapy of large defects in peripheral nerve injury (PNI) suffers from several drawbacks, especially the lack of autologous nerve donors. Nerve conduits are considered as a solution for nerve injury treatment, but biocompatibility improvements is still required for conduits prepared with synthetic materials. Cell-derived extracellular matrix (ECM) has drawn attention due to its lower risk of immunogenic response and independence from donor availability. The goal of this study is to coat bone mesenchymal stem cell-derived ECMs on poly(lactic-co-glycolic) acid (PLGA) conduits to enhance their ability to support neural growth and neurite extensions. The ECM-coated conduits have better hydrophilic properties than the pure PLGA conduits. A marked increase on PC12 and RSC96 cells' viability, proliferation and dorsal root ganglion neurite extension was observed. Quantitative PCR analysis exhibited a significant increase in markers for cell proliferation (GAP43), neurite extension (NF-H, MAP2, andßIII-tubulin) and neural function (TREK-1). These results show the potential of ECM-coated PLGA conduits in PNI therapy.


Asunto(s)
Proliferación Celular , Supervivencia Celular , Matriz Extracelular , Células Madre Mesenquimatosas , Regeneración Nerviosa , Neuritas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Animales , Ratas , Neuritas/metabolismo , Células PC12 , Matriz Extracelular/metabolismo , Células Madre Mesenquimatosas/citología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Regeneración Nerviosa/efectos de los fármacos , Andamios del Tejido/química , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Ganglios Espinales , Traumatismos de los Nervios Periféricos/terapia , Ingeniería de Tejidos/métodos , Polímeros/química , Ensayo de Materiales
2.
Int J Biol Macromol ; 277(Pt 2): 134102, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39047998

RESUMEN

Chronic wounds represent a formidable global healthcare challenge due to the bacteria infections and uncontrollable inflammation responses, while developing wound healing materials capable of resolving these issues remains a challenge. In this study, we integrated xyloglucan (XG) with Pluronic F127 diacrylate (F127DA)to develop a composite hydrogel for wound healing, where the XG introduced anti-inflammation and anti-bacterial properties to the construct, and F127DA provides the photocurable properties essential for hydrogel formation and robust mechanical characteristics to achieve physical strength that matches tissue regeneration. The material characterizations suggested that XG/F127DA hydrogels had great biostability, blood compatibility and antibacterial effects, which was suitable to be used as a wound healing material. The in vitro analysis by culturing L929 fibroblasts on the hydrogel surface demonstrated that the inclusion of XG could promote the cellular proliferation rate, migration rate, and re-epithelialization-related marker expression, while downregulate the inflammation process. The XG/F127DA hydrogel was further used for the full-thickness skin wound healing test on mice, where the inclusion of XG significantly increased the wound closure rate through reducing the inflammation responses, and promote re-epithelialization and angiogenesis. These results indicated that XG/F127DA hydrogel has great potential to be used for wound healing in future clinical translation.


Asunto(s)
Glucanos , Hidrogeles , Micelas , Poloxámero , Cicatrización de Heridas , Xilanos , Cicatrización de Heridas/efectos de los fármacos , Poloxámero/química , Xilanos/química , Xilanos/farmacología , Animales , Glucanos/química , Glucanos/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Ratones , Línea Celular , Proliferación Celular/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Fibroblastos/efectos de los fármacos , Polisacáridos/química , Polisacáridos/farmacología , Movimiento Celular/efectos de los fármacos
3.
Acta Biomater ; 180: 323-336, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38561075

RESUMEN

Peripheral nerve injuries (PNIs) can cause neuropathies and significantly affect the patient's quality of life. Autograft transplantation is the gold standard for conventional treatment; however, its application is limited by nerve unavailability, size mismatch, and local tissue adhesion. Tissue engineering, such as nerve guidance conduits, is an alternative and promising strategy to guide nerve regeneration for peripheral nerve repair; however, only a few conduits could reach the high repair efficiency of autografts. The healing process of PNI is frequently accompanied by not only axonal and myelination regeneration but also angiogenesis, which initializes nerve regeneration through vascular endothelial growth factor A (VEGF-A). In this study, a composite nerve conduit with a poly (lactic-co-glycolic acid) (PLGA) hollow tube as the outer layer and gelatin methacryloyl (GelMA) encapsulated with VEGF-A transfected Schwann cells (SCs) as the inner layer was established to evaluate its promising ability for peripheral nerve repair. A rat model of peripheral nerve defect was used to examine the efficiency of PLGA/GelMA-SC (VA) conduits, whereas autograft, PLGA, PLGA/GelMA, and PLGA/GelMA-SC (NC) were used as controls. VEGF-A-transfected SCs can provide a stable source for VEGF-A secretion. Furthermore, encapsulation in GelMA cannot only promote proliferation and tube formation of human umbilical vein endothelial cells but also enhance dorsal root ganglia and neuronal cell extension. Previous animal studies have demonstrated that the regenerative effects of PLGA/GelMA-SC (VA) nerve conduit were similar to those of autografts and much better than those of other conduits. These findings indicate that combination of VEGF-A-overexpressing SCs and PLGA/GelMA conduit-guided peripheral nerve repair provides a promising method that enhances angiogenesis and regeneration during nerve repair. STATEMENT OF SIGNIFICANCE: Nerve guidance conduits shows promise for peripheral nerve repair, while achieving the repair efficiency of autografts remains a challenge. In this study, a composite nerve conduit with a PLGA hollow tube as the outer layer and gelatin methacryloyl (GelMA) encapsulated with vascular endothelial growth factor A (VEGF-A)-transfected Schwann cells (SCs) as the inner layer was established to evaluate its potential ability for peripheral nerve repair. This approach preserves growth factor bioactivity and enhances material properties. GelMA insertion promotes Schwann cell proliferation and morphology extension. Moreover, transfected SCs serve as a stable VEGF-A source and fostering angiogenesis. This study offers a method preserving growth factor efficacy and safeguarding SCs, providing a comprehensive solution for enhanced angiogenesis and nerve regeneration.


Asunto(s)
Neovascularización Fisiológica , Regeneración Nerviosa , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ratas Sprague-Dawley , Células de Schwann , Factor A de Crecimiento Endotelial Vascular , Células de Schwann/metabolismo , Células de Schwann/citología , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología , Regeneración Nerviosa/efectos de los fármacos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Neovascularización Fisiológica/efectos de los fármacos , Ratas , Transfección , Gelatina/química , Masculino , Andamios del Tejido/química , Humanos , Traumatismos de los Nervios Periféricos/terapia , Traumatismos de los Nervios Periféricos/patología , Angiogénesis
4.
J Mater Sci Mater Med ; 34(7): 35, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37477830

RESUMEN

Peripheral nerve injury (PNI) is a common and severe clinical disease worldwide, which leads to a poor prognosis because of the complicated treatments and high morbidity. Autologous nerve grafting as the gold standard still cannot meet the needs of clinical nerve transplantation because of its low availability and limited size. The development of artificial nerve conduits was led to a novel direction for PNI treatment, while most of the currently developed artificial nerve conduits was lack biochemical cues to promote nerve regeneration. In this study, we designed a novel composite neural conduit by inserting decellularized the rat sciatic nerve or kidney in a poly (lactic-co-glycolic acid) (PLGA) grooved conduit. The nerve regeneration effect of all samples was analyzed using rat sciatic nerve defect model, where decellularized tissues and grooved PLGA conduit alone were used as controls. The degree of nerve regeneration was evaluated using the motor function, gastrocnemius recovery, and morphological and histological assessments suggested that the combination of a grooved conduit with decellularized tissues significantly promoted nerve regeneration compared with decellularized tissues and PLGA conduit alone. It is worth to note that the grooved conduits containing decellularized nerves have a promotive effect similar to that of autologous nerve grafting, suggesting that it could be an artificial nerve conduit used for clinical practice in the future.


Asunto(s)
Ácido Láctico , Traumatismos de los Nervios Periféricos , Ratas , Animales , Ácido Láctico/farmacología , Nervio Ciático/fisiología , Regeneración Nerviosa , Traumatismos de los Nervios Periféricos/terapia , Traumatismos de los Nervios Periféricos/patología , Prótesis e Implantes
5.
Biofabrication ; 15(3)2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37236173

RESUMEN

Prostate cancer (PCa) is one of the most lethal cancers in men worldwide. The tumor microenvironment (TME) plays an important role in PCa development, which consists of tumor cells, fibroblasts, endothelial cells, and extracellular matrix (ECM). Hyaluronic acid (HA) and cancer-associated fibroblasts (CAFs) are the major components in the TME and are correlated with PCa proliferation and metastasis, while the underlying mechanism is still not fully understood due to the lack of biomimetic ECM components and coculture models. In this study, gelatin methacryloyl/chondroitin sulfate-based hydrogels were physically crosslinked with HA to develop a novel bioink for the three-dimensional bioprinting of a coculture model that can be used to investigate the effect of HA on PCa behaviors and the mechanism underlying PCa-fibroblasts interaction. PCa cells demonstrated distinct transcriptional profiles under HA stimulation, where cytokine secretion, angiogenesis, and epithelial to mesenchymal transition were significantly upregulated. Further coculture of PCa with normal fibroblasts activated CAF transformation, which could be induced by the upregulated cytokine secretion of PCa cells. These results suggested HA could not only promote PCa metastasis individually but also induce PCa cells to activate CAF transformation and form HA-CAF coupling effects to further promote PCa drug resistance and metastasis.


Asunto(s)
Bioimpresión , Neoplasias de la Próstata , Masculino , Humanos , Microambiente Tumoral , Transición Epitelial-Mesenquimal , Células Endoteliales/patología , Línea Celular Tumoral , Neoplasias de la Próstata/patología , Citocinas
6.
ACS Biomater Sci Eng ; 9(5): 2347-2361, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37026628

RESUMEN

Melanoma is a highly malignant tumor originating from melanocytes. The 5-year survival rate of primary melanoma is 98%, whereas the survival rate of metastatic melanoma is only 10%, which can be attributed to the insensitivity to existing treatments. Fibroblasts are the primary cells in the dermis that promote melanoma metastasis; however, the molecular mechanism underlying the fibroblast-melanoma interaction is yet to be completely understood. Herein, gelatin methacryloyl (GelMA) was used to construct a co-culture model for melanoma cells (A375) and fibroblasts. GelMA retains the good biological properties of collagen, which has been identified as the primary component of the melanoma tumor microenvironment. Fibroblasts were encapsulated in GelMA, whereas A375 cells were cultured on the GelMA surface, which realistically mimics the macrostructure of melanoma. A375 cells co-cultured with fibroblasts demonstrated a higher cellular proliferation rate, potentials of neoneurogenesis, overexpression of epithelial mesenchymal transition markers, and a faster migration rate compared with A375 cells cultured alone, which could be due to the cancer-associated fibroblast activation and the overexpression of transforming growth factor ß1 and fibroblast growth factor-2 by fibroblasts. Overall, this study revealed the possible mechanisms of fibroblast-melanoma interaction and suggested that this co-culture model could be potentially further developed as a platform for screening chemotherapies in the future.


Asunto(s)
Biomimética , Melanoma , Humanos , Técnicas de Cocultivo , Colágeno/metabolismo , Fibroblastos/metabolismo , Microambiente Tumoral
7.
Regen Ther ; 21: 596-610, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36475027

RESUMEN

Alopecia is a common and distressing medical condition that has affected a majority of people worldwide, which leads to great effects on the quality of life and self-esteem. Numerous treatments had been used to cure alopecia, including hair growth stimulants, herbal products, and hair transplantation. However, these treatments have their side effects, such as hypertrichosis, edema, and even cardiovascular adverse effects, which lead to the urgent requirement to explore a new hair-follicle (HF) regeneration approach. Tissue engineering could be the potential way for HF regeneration by simulating the epithelial-mesenchymal interaction and cell-extracellular matrix interactions. This review summarized the potential cells that are used in tissue engineering, commonly used tissue engineering techniques, and most importantly, the biomaterials that have been applied for in vitro three-dimensional cell culture or in vivo co-transplantation in HF regeneration. The literature shows that advances in this field toward functional HF development have progressively increased. Although the clinical application of biomaterial co-transplantation for HF regeneration still faces various challenges, numerous studies have proved that this is a promising direction that could be achieved in the future.

8.
Front Neurol ; 13: 986377, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36188412

RESUMEN

Peripheral nerve injuries cause an absence or destruction of nerves. Decellularized nerves, acting as a replacement for autografts, have been investigated in the promotion of nerve repair and regeneration, always being incorporated with stem cells or growth factors. However, such a strategy is limited by size availability. The potential application in heterotopic transplantation of other decellularized tissues needs to be further explored. In this study, rat decellularized kidney (dK) was selected to be compared with decellularized peripheral nerve (dN), since dK has aboundant ECM components and growth factors. The PC-12 cells were cultured on dK and dN scaffolds, as shown in the similar behaviors of cell metabolism and viability, but have a more regular arrangement on dN compared to dK, indicating that the natural structure plays an important role in guiding cell extension. However, we found significant upregulation of axon-growth-associated genes and proteins of PC-12 cells in the dK group compared to the dN group by qRT-PCR, immunofluorescence, and western blotting. Furthermore, various neurotrophic factors and growth factors of acellular kidney and nerve were evaluated by ELISA assay. The lower expression of neurotrophic factors but higher expression of growth factors such as VEGF and HGF from dK suggests that axon growth and extension for PC-12 cells may be partially mediated by VEGF and HGF expression from decellularized kidney, which further points to a potential application in nerve repair and regeneration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA