Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.262
1.
J Ovarian Res ; 17(1): 96, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720349

OBJECTIVE: To describe the characteristics of children and adolescents with borderline ovarian tumors (BOTs) and evaluate the efficacy and safety of fertility-sparing surgery (FSS) in these patients. METHODS: Patients with BOTs younger than 20 years who underwent FSS were included in this study. RESULTS: A total of 34 patients were included, with a median patient age of 17 (range, 3-19) years; 97.1% (33/34) of cases occurred after menarche. Of the patients, 82.4% had mucinous borderline tumors (MBOTs), 14.7% had serous borderline tumors (SBOTs), and 2.9% had seromucinous borderline tumor (SMBOT). The median tumor size was 20.4 (range, 8-40)cm. All patients were at International Federation of Gynecology and Obstetrics stage I and all underwent FSS: cystectomy (unilateral ovarian cystectomy, UC, 14/34, 41.2% and bilateral ovarian cystectomy, BC, 1/34, 2.9%), unilateral salpingo-oophorectomy (USO; 18/34; 52.9%), or USO + contralateral ovarian cystectomy (1/34; 2.9%). The median follow-up time was 65 (range, 10-148) months. Recurrence was experienced by 10 of the 34 patients (29.4%). One patient with SBOT experienced progression to low-grade serous carcinoma after the third relapse. Two patients had a total of four pregnancies, resulting in three live births. The recurrence rate of UC was significantly higher in MBOTs than in USO (p = 0.005). The 5-year disease-free survival rate was 67.1%, and the 5-year overall survival rate was 100%. CONCLUSIONS: Fertility-sparing surgery is feasible and safe for children and adolescents with BOTs. For patients with MBOTs, USO is recommended to lower the risk of recurrence.


Fertility Preservation , Ovarian Neoplasms , Humans , Female , Adolescent , Ovarian Neoplasms/surgery , Ovarian Neoplasms/pathology , Fertility Preservation/methods , Child , Retrospective Studies , Young Adult , Child, Preschool , Treatment Outcome , Organ Sparing Treatments/methods , Neoplasm Recurrence, Local
2.
Heliyon ; 10(9): e30493, 2024 May 15.
Article En | MEDLINE | ID: mdl-38726193

Aims: This study aimed to evaluate the prevalence of cognitive impairment among patients with acute heart failure (AHF), its prognosis, and the effects of cardiac rehabilitation (CR) on these patients' outcomes. Methods: Overall, 247 consecutive AHF patients (median age, 60 years; males, 78.5 %) were evaluated from March 2015 to May 2021. Patients received an AHF disease management program coordinated by an HF specialist nurse and underwent a Luria-Nebraska Neuropsychological battery-screening test (LNNB-S) assessment during admission. Cognitive impairment was defined as an LNNB-S score ≥10. Patients who underwent at least one session of phase II CR and continued with the home-based exercise program were considered to have received CR. The primary endpoint was composite all-cause mortality or readmission after a 3.30-year follow-up (interquartile range, 1.69-5.09 years). Results: Cognitive impairment occurred in 53.0 % and was associated with significantly higher composite endpoint, all-cause mortality, and readmission rates (p=<0.001, 0.001, and 0.015, respectively). In the total cohort, 40.9 % of patients experienced the composite endpoint. Multivariate analysis showed that the peak VO2 was a significant predictor of the composite endpoint. After adjustment, CR significantly decreased the event rate of the composite endpoint and the all-cause mortality in patients with cognitive impairment (log-rank p = 0.024 and 0.009, respectively). However, CR did not have a significant benefit on the composite endpoint and the all-cause mortality in patients without cognitive impairment (log-rank p = 0.682 and 0.701, respectively). Conclusion: Cognitive impairment is common in AHF patients and can lead to poor outcomes. CR is a standard treatment to improve prognosis.

3.
Int J Ophthalmol ; 17(3): 528-536, 2024.
Article En | MEDLINE | ID: mdl-38721515

AIM: To evaluate the effectiveness and safety of early lens extraction during pars plana vitrectomy (PPV) for proliferative diabetic retinopathy (PDR) compared to those of PPV with subsequent cataract surgery. METHODS: This multicenter randomized controlled trial was conducted in three Chinese hospitals on patients with PDR, aged >45y, with mild cataracts. The participants were randomly assigned to the combined (PPV combined with simultaneously cataract surgery, i.e., phacovitrectomy) or subsequent (PPV with subsequent cataract surgery 6mo later) group and followed up for 12mo. The primary outcome was the change in best-corrected visual acuity (BCVA) from baseline to 6mo, and the secondary outcomes included complication rates and medical expenses. RESULTS: In total, 129 patients with PDR were recruited and equally randomized (66 and 63 in the combined and subsequent groups respectively). The change in BCVA in the combined group [mean, 36.90 letters; 95% confidence interval (CI), 30.35-43.45] was significantly better (adjusted difference, 16.43; 95%CI, 8.77-24.08; P<0.001) than in the subsequent group (mean, 22.40 letters; 95%CI, 15.55-29.24) 6mo after the PPV, with no significant difference between the two groups at 12mo. The overall surgical risk of two sequential surgeries was significantly higher than that of the combined surgery for neovascular glaucoma (17.65% vs 3.77%, P=0.005). No significant differences were found in the photocoagulation spots, surgical time, and economic expenses between two groups. In the subsequent group, the duration of work incapacity (22.54±9.11d) was significantly longer (P<0.001) than that of the combined group (12.44±6.48d). CONCLUSION: PDR patients aged over 45y with mild cataract can also benefit from early lens extraction during PPV with gratifying effectiveness, safety and convenience, compared to sequential surgeries.

4.
ACS Nano ; 2024 May 09.
Article En | MEDLINE | ID: mdl-38723037

Compliant materials are crucial for stretchable electronics. Stretchable solids and gels have limitations in deformability and durability, whereas active liquids struggle to create complex devices. This study presents multifunctional yield-stress fluids as printable ink materials to construct stretchable electronic devices. Ionic nanocomposites comprise silica nanoparticles and ion liquids, while electrical nanocomposites use the natural oxidation of liquid metals to produce gallium oxide nanoflake additives. These nanocomposite inks can be printed on an elastomer substrate and stay in a solid state for easy encapsulation. However, their transition into a liquid state during stretching allows ultrahigh deformability up to the fracture strain of the elastomer. The ionic inks produce strain sensors with high stretchability and temperature sensors with high sensitivity of 7% °C-1. Smart gloves are further created by integrating these sensors with printed electrical interconnects, demonstrating bimodal detection of temperatures and hand gestures. The nanocomposite yield-stress fluids combine the desirable qualities of solids and liquids for stretchable devices and systems.

5.
Mol Cell ; 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38723633

Many multi-spanning membrane proteins contain poorly hydrophobic transmembrane domains (pTMDs) protected from phospholipid in mature structure. Nascent pTMDs are difficult for translocon to recognize and insert. How pTMDs are discerned and packed into mature, muti-spanning configuration remains unclear. Here, we report that pTMD elicits a post-translational topogenesis pathway for its recognition and integration. Using six-spanning protein adenosine triphosphate-binding cassette transporter G2 (ABCG2) and cultured human cells as models, we show that ABCG2's pTMD2 can pass through translocon into the endoplasmic reticulum (ER) lumen, yielding an intermediate with inserted yet mis-oriented downstream TMDs. After translation, the intermediate recruits P5A-ATPase ATP13A1, which facilitates TMD re-orientation, allowing further folding and the integration of the remaining lumen-exposed pTMD2. Depleting ATP13A1 or disrupting pTMD-characteristic residues arrests intermediates with mis-oriented and exposed TMDs. Our results explain how a "difficult" pTMD is co-translationally skipped for insertion and post-translationally buried into the final correct structure at the late folding stage to avoid excessive lipid exposure.

6.
Environ Pollut ; 351: 124079, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38692390

With the application of engineered nanomaterials and antibiotics in the fields of medicine, aerospace, new energy and agriculture, the associated contamination is detected widely in soil-groundwater systems. It is of great scientific and practical significance to deeply explore the environmental interface process between nanoparticles and antibiotics for the scientific assessment of environmental fate and ecological environmental risks, as well as the development of new composite pollution control technologies. In this study, the co-transport behaviors of positively charged titanium dioxide nanoparticles (TiO2-NPs) and negatively charged levofloxacin (LEV) in quartz sand (QS) are investigated in this study. The results show that TiO2-NPs hardly flow out when transported alone in the column because of its positive charge, which creates a strong attraction with the negatively charged quartz sand on the surface. When TiO2-NPs co-migrate with LEV in porous media, the presence of LEV promotes the transport of TiO2-NPs, while the presence of TiO2-NPs inhibits LEV transport. Non-XDLVO interactions based on molecular dynamics (MD) simulations can help explain the observed promotion and inhibition phenomena as well as the correlation between TiO2-NPs and LEV. The results indicate that TiO2-LEV complexes or aggregates can be formed during the co-transportation process of TiO2-NPs and LEV in porous media. As flow velocity increases from 0.204 cm min-1 to 1.630 cm min-1, both the transport capacities of TiO2-NPs and LEV are enhanced significantly. Under the condition of high citric acid (CA) concentration (15 mmol L-1), the transport capacity of TiO2-NPs is slightly inhibited, while the transport capacity of LEV is enhanced. This study provides new insights into the transport of nanometallic oxides and antibiotics in porous media, which suggests that non-XDLVO interactions should be considered together when assessing the environmental risks and fate of nanometallic oxides and antibiotics in soil-groundwater systems.

7.
J Biomed Mater Res A ; 2024 May 06.
Article En | MEDLINE | ID: mdl-38706446

Bacteriophage (phage) has been reported to reduce the bacterial infection in delayed-healing wounds and, as a result, aiding in the healing of said wounds. In this study we investigated whether the presence of phage itself could help repair delayed-healing wounds in diabetic mice. Three strains of phage that target Salmonella enterica, Escherichia coli, and Pseudomonas aeruginosa were used. To prevent the phage liquid from running off the wound, the mixture of phage (phage-cocktail) was encapsulated in a porous hydrogel dressing made with three-dimensional printing. The phage-cocktail dressing was tested for its phage preservation and release efficacy, bacterial reduction, cytotoxicity with 3T3 fibroblast, and performance in repairing a sterile full-thickness skin wound in diabetic mice. The phage-cocktail dressing released 1.7%-5.7% of the phages embedded in 24 h, and reduced between 37%-79% of the surface bacteria compared with the blank dressing (p <.05). The phage-cocktail dressing exhibited no sign of cytotoxicity after 3 days (p <.05). In vivo studies showed that 14 days after incision, the full-thickness wound treated with a phage-cocktail dressing had a higher wound healing ratio compared with the blank dressing and control (p <.01). Histological analysis showed that the structure of the skin layers in the group treated with phage-cocktail dressing was restored in an orderly fashion. Compared with the blank dressing and control, the repaired tissue in the phage-cocktail dressing group had new capillary vessels and no sign of inflammation in its dermis, and its epidermis had a higher degree of re-epithelialization (p <.05). The slow-released phage has demonstrated positive effects in repairing diabetic skin wounds.

8.
Acta Pharmacol Sin ; 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38641746

Acute kidney injury (AKI) is defined as sudden loss of renal function characterized by increased serum creatinine levels and reduced urinary output with a duration of 7 days. Ferroptosis, an iron-dependent regulated necrotic pathway, has been implicated in the progression of AKI, while ferrostatin-1 (Fer-1), a selective inhibitor of ferroptosis, inhibited renal damage, oxidative stress and tubular cell death in AKI mouse models. However, the clinical translation of Fer-1 is limited due to its lack of efficacy and metabolic instability. In this study we designed and synthesized four Fer-1 analogs (Cpd-A1, Cpd-B1, Cpd-B2, Cpd-B3) with superior plasma stability, and evaluated their therapeutic potential in the treatment of AKI. Compared with Fer-1, all the four analogs displayed a higher distribution in mouse renal tissue in a pharmacokinetic assay and a more effective ferroptosis inhibition in erastin-treated mouse tubular epithelial cells (mTECs) with Cpd-A1 (N-methyl-substituted-tetrazole-Fer-1 analog) being the most efficacious one. In hypoxia/reoxygenation (H/R)- or LPS-treated mTECs, treatment with Cpd-A1 (0.25 µM) effectively attenuated cell damage, reduced inflammatory responses, and inhibited ferroptosis. In ischemia/reperfusion (I/R)- or cecal ligation and puncture (CLP)-induced AKI mouse models, pre-injection of Cpd-A1 (1.25, 2.5, 5 mg·kg-1·d-1, i.p.) dose-dependently improved kidney function, mitigated renal tubular injury, and abrogated inflammation. We conclude that Cpd-A1 may serve as a promising therapeutic agent for the treatment of AKI.

9.
Mater Today Bio ; 26: 101058, 2024 Jun.
Article En | MEDLINE | ID: mdl-38681057

Biomechanical cues could effectively govern cell gene expression to direct the differentiation of specific stem cell lineage. Recently, the medium viscosity has emerged as a significant mechanical stimulator that regulates the cellular mechanical properties and various physiological functions. However, whether the medium viscosity can regulate the mechanical properties of human mesenchymal stem cells (hMSCs) to effectively trigger osteogenic differentiation remains uncertain. The mechanism by which cells sense and respond to changes in medium viscosity, and regulate cell mechanical properties to promote osteogenic lineage, remains elusive. In this study, we demonstrated that hMSCs, cultured in a high-viscosity medium, exhibited larger cell spreading area and higher intracellular tension, correlated with elevated formation of actin stress fibers and focal adhesion maturation. Furthermore, these changes observed in hMSCs were associated with activation of TRPV4 (transient receptor potential vanilloid sub-type 4) channels on the cell membrane. This feedback loop among TRPV4 activation, cell spreading and intracellular tension results in calcium influx, which subsequently promotes the nuclear localization of NFATc1 (nuclear factor of activated T cells 1). Concomitantly, the elevated intracellular tension induced nuclear deformation and promoted the nuclear localization of YAP (YES-associated protein). The concurrent activation of NFATc1 and YAP significantly enhanced alkaline phosphatase (ALP) for pre-osteogenic activity. Taken together, these findings provide a more comprehensive view of how viscosity-induced alterations in biomechanical properties of MSCs impact the expression of osteogenesis-related genes, and ultimately promote osteogenic lineage.

10.
Int J Mol Sci ; 25(7)2024 Mar 25.
Article En | MEDLINE | ID: mdl-38612453

The objective of this study was to investigate gut dysbiosis and its metabolic and inflammatory implications in pediatric metabolic dysfunction-associated fatty liver disease (MAFLD). This study included 105 children and utilized anthropometric measurements, blood tests, the Ultrasound Fatty Liver Index, and fecal DNA sequencing to assess the relationship between gut microbiota and pediatric MAFLD. Notable decreases in Lachnospira spp., Faecalibacterium spp., Oscillospira spp., and Akkermansia spp. were found in the MAFLD group. Lachnospira spp. was particularly reduced in children with MAFLD and hepatitis compared to controls. Both MAFLD groups showed a reduction in flavone and flavonol biosynthesis sequences. Lachnospira spp. correlated positively with flavone and flavonol biosynthesis and negatively with insulin levels and insulin resistance. Body weight, body mass index (BMI), and total cholesterol levels were inversely correlated with flavone and flavonol biosynthesis. Reduced Lachnospira spp. in children with MAFLD may exacerbate insulin resistance and inflammation through reduced flavone and flavonol biosynthesis, offering potential therapeutic targets.


Flavones , Hepatitis A , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Humans , Child , Clostridiales , Flavonols
11.
ACS EST Air ; 1(4): 283-293, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38633206

Global ground-level measurements of elements in ambient particulate matter (PM) can provide valuable information to understand the distribution of dust and trace elements, assess health impacts, and investigate emission sources. We use X-ray fluorescence spectroscopy to characterize the elemental composition of PM samples collected from 27 globally distributed sites in the Surface PARTiculate mAtter Network (SPARTAN) over 2019-2023. Consistent protocols are applied to collect all samples and analyze them at one central laboratory, which facilitates comparison across different sites. Multiple quality assurance measures are performed, including applying reference materials that resemble typical PM samples, acceptance testing, and routine quality control. Method detection limits and uncertainties are estimated. Concentrations of dust and trace element oxides (TEO) are determined from the elemental dataset. In addition to sites in arid regions, a moderately high mean dust concentration (6 µg/m3) in PM2.5 is also found in Dhaka (Bangladesh) along with a high average TEO level (6 µg/m3). High carcinogenic risk (>1 cancer case per 100000 adults) from airborne arsenic is observed in Dhaka (Bangladesh), Kanpur (India), and Hanoi (Vietnam). Industries of informal lead-acid battery and e-waste recycling as well as coal-fired brick kilns likely contribute to the elevated trace element concentrations found in Dhaka.

12.
Tzu Chi Med J ; 36(2): 136-141, 2024.
Article En | MEDLINE | ID: mdl-38645790

Cerebrovascular accidents, also known as strokes, represent a major global public health challenge and contribute to substantial mortality, disability, and socioeconomic burden. Multidisciplinary approaches for poststroke therapies are crucial for recovering lost functions and adapting to new limitations. This review discusses the potential of neuromodulation techniques, repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation, spinal cord stimulation (SCS), vagus nerve stimulation (VNS), and deep brain stimulation (DBS), as innovative strategies for facilitating poststroke recovery. Neuromodulation is an emerging adjunct to conventional therapies that target neural plasticity to restore lost function and compensate for damaged brain areas. The techniques discussed in this review have different efficacies in enhancing neural plasticity, optimizing motor recovery, and mitigating poststroke impairments. Specifically, rTMS has shown significant promise in enhancing motor function, whereas SCS has shown potential in improving limb movement and reducing disability. Similarly, VNS, typically used to treat epilepsy, has shown promise in enhancing poststroke motor recovery, while DBS may be used to improve poststroke motor recovery and symptom mitigation. Further studies with standardized protocols are warranted to elucidate the efficacy of these methods and integrate them into mainstream clinical practice to optimize poststroke care.

13.
EClinicalMedicine ; 71: 102579, 2024 May.
Article En | MEDLINE | ID: mdl-38618203

Background: In resectable oesophageal squamous cell carcinoma (ESCC), the efficacy of camrelizumab combined with chemotherapy and apatinib followed by minimally invasive oesophagectomy is not clear. We aimed to fill this knowledge gap. Methods: This investigator-initiated, single-arm, prospective, phase 2 trial was performed at the Second Affiliated Hospital of Zhejiang University, China. Patients (aged 18-75 years) who were histologically or cytologically diagnosed with ESCC were deemed suitable to participate in this trial. Patients received 2-3 cycles of neoadjuvant therapy with camrelizumab, nedaplatin, albumin paclitaxel, and apatinib; each cycle was repeated every 14 days. Surgery occurred 4-6 weeks after the last neoadjuvant treatment cycle. The primary outcome was the pathological complete response (PCR) rate of the tumour and lymph nodes. The changes in the peripheral blood immunoprofile among patients without PCR (ie, non-PCR [NPCR]) and with PCR were assessed by mass cytometry. This study was registered with ClinicalTrials.gov, NCT04666090. Findings: 42 patients were enrolled between November 23, 2020 and December 31, 2022. The disease control rate was 100.0% (95% CI, 91.6-100%), and the objective response rate was 83.3% (95% CI, 68.6-93.0%). Six (14.3%) patients experienced grade 3 adverse events. The most common were white blood cell count decrease (31.0%), alopecia (81.0%), asthenia (38.1%), and reactive cutaneous capillary endothelial proliferation (35.7%). 41 patients received minimally invasive oesophagectomy; all 41patients achieved R0 resection, and 18 (43.9%, 95% CI, 28.5-60.3%) patients achieved PCR. The median follow-up was 23 months and the 2-year survival rate was 85.9%. T-cell subsets in both the PCR and NPCR groups exhibited consistency in response to neoadjuvant therapy. In contrast, some of natural killer (NK) cells (NK-C03, NK-C11), B cells (B-C06) and monocytes (M-C05), exhibited significant differences between the PCR and NPCR groups before neoadjuvant therapy. M-C06 had a significant difference in the PCR group and NPCR group after neoadjuvant therapy. NK-C12 and B-C15 showed significant differences both before and after neoadjuvant therapy. Interpretation: The application of camrelizumab, chemotherapy and apatinib in the neoadjuvant setting for locally advanced ESCC has shown promising antitumour activity and an acceptable safety profile in this single-arm study. In the neoadjuvant setting, NK cell, B cell, and monocyte subsets exhibited greater predictive power for immunotherapy responsiveness than T-cell subsets. Longer follow-up to assess survival outcomes and a phase 3 randomised trial are needed to further evaluate the proposed treatment. Funding: The China Anti-Cancer Association and the "Leading Goose" Research and Development Project of Zhejiang Province.

14.
Food Sci Nutr ; 12(4): 2346-2363, 2024 Apr.
Article En | MEDLINE | ID: mdl-38628176

A safety evaluation was performed of Symbiota®, which is made by a proprietary anaerobic fermentation process of soybean with multistrains of probiotics and a yeast. The battery of genotoxicity studies showed that Symbiota® has no genotoxic effects. Safety and tolerability were further assessed by acute or repeated dose 28- and 90-day rodent studies, and no alterations in clinical observations, ophthalmological examination, blood chemistry, urinalysis, or hematology were observed between the control group and the different dosing groups (1.5, 5, and 15 mL/kg/day). There were no adverse effects on specific tissues or organs in terms of weight and histopathology. Importantly, the Symbiota® treatment did not perturb hormones and other endocrine-related endpoints. Of note, the No-Observed-Adverse-Effect-Level was determined to be 15 mL/kg/day in rats. Moreover, a randomized, double-blind, placebo-controlled clinical trial was recently conducted with healthy volunteers who consumed 8 mL/day of placebo or Symbiota® for 8 weeks. Only mild adverse events were reported in both groups, and the blood chemistry and blood cell profiles were also similar between the two groups. In summary, this study concluded that the oral consumption of Symbiota® at 8 mL/day by the general population does not pose any human health concerns.

15.
Adv Sci (Weinh) ; : e2309526, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38650119

Photocatalytic reduction of CO2 is a promising strategy to mitigate the effects of global warming by converting CO2 into valuable energy-dense products. Silver bismuth iodide (SBI) is an attractive material owing to its tunable bandgap and favorable band-edge positions for efficient CO2 photoreduction. In this study, SBI materials, including AgBi2I7, AgBiI4, Ag2BiI5, and Ag3BiI6 are first synthesized, through gas-solid reaction by controlling the stoichiometric ratio of reactants. The X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) results revealed that the distance between Ag-I is proportional to the degree of Ag ions delocalization, which occupies the vacant sites. That greatly retards the charge recombination at vacant sites. In addition, the surface potential via photo-assisted Kelvin probe force measurements of various SBI catalysts shows that Ag3BiI6 exhibits the highest surface potential change due to the rich delocalized Ag ions. This results in effective charge carrier transport and prevention of charge recombination at vacant sites. Taking the above advantages, the averaged CO and CH4 production rates for Ag3BiI6 achieved 0.23 and 0.10 µmol g-1 h-1, respectively. The findings suggest that Ag3BiI6 has a high potential as a novel photocatalyst for CO2 reduction and sheds light on the possibility of solving environmental contamination and sustainable energy crises.

16.
Phys Rev Lett ; 132(12): 126201, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38579216

The competition between on-site electronic correlation and local crystal field stands out as a captivating topic in research. However, its physical ramifications often get overshadowed by influences of strong periodic potential and orbital hybridization. The present study reveals this competition may become more pronounced or even dominant in two-dimensional systems, driven by the combined effects of dimensional confinement and orbital anisotropy. This leads to electronic orbital reconstruction in certain perovskite superlattices or thin films. To explore the emerging physics, we investigate the interfacial orbital disorder-order transition with an effective Hamiltonian and how to modulate this transition through strains.

17.
Appl Opt ; 63(10): 2503-2508, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38568529

We propose a methodology to mitigate angular color variation in full-color micron-scale LED arrays. By simulating light field distribution for red (AlGaAs) and green/blue (GaN) light across various RGB micro-LED sizes, we can select matching light field patterns for RGB chips, reducing angular color variation from 0.0201 to 0.0030. Applying this method to full-color mini-LED assemblies achieves a reduction from 0.0128 to 0.0032 by matching light field patterns with varying substrate thicknesses. This straightforward approach aligns with current mass transfer processes, offering practical implementation.

18.
Opt Express ; 32(7): 11463-11473, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38570993

Augmented reality (AR), a technology that superimposes virtual information onto a user's direct view of real-world scenes, is considered one of the next-generation display technologies and has been attracting considerable attention. Here, we propose a flat optic AR system that synergistically integrates a polarization-independent metalens with micro light-emitting diodes (LEDs). A key component is a meticulously designed metalens with a numerical aperture of 0.25, providing a simulated focusing efficiency of approximately 76.5% at a wavelength of 532 nm. Furthermore, the laser measurement system substantiates that the fabricated metalens achieves a focusing efficiency of 70.8%. By exploiting the reversibility of light characteristics, the metalens transforms the divergent light from green micro-LEDs into a collimated beam that passes through the pupil and images on the retina. Monochromatic pixels with a size of 5×5 µm2 and a pitch of 10 µm can be distinctly resolved with a power efficiency of 50%. This work illustrates the feasibility of integrating the metalens with microdisplays, realizing a high-efficiency AR device without the need for additional optical components and showcasing great potential for the development of near-eye display applications.

19.
Environ Toxicol ; 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38572829

The number of patients with chronic kidney disease (CKD) is increasing. Oral toxin adsorbents may provide some value. Several uremic toxins, including indoxyl sulfate (IS), p-cresol (PCS), acrolein, per- and poly-fluoroalkyl substances (PFAS), and inflammation markers (interleukin 6 [IL-6] and tumor necrosis factor [TNF]-alpha) have been shown to be related to CKD progression. A total of 81 patients taking oral activated charcoal toxin adsorbents (AC-134), which were embedded in capsules that dissolved in the terminal ileum, three times a day for 1 month, were recruited. The renal function, hemoglobulin (Hb), inflammation markers, three PFAS (PFOA, PFOS, and PFNA), and acrolein were quantified. Compared with the baseline, an improved glomerular filtration rate (GFR) and significantly lower acrolein were noted. Furthermore, the CKD stage 4 and 5 group had significantly higher concentrations of IS, PCS, IL-6, and TNF but lower levels of Hb and PFAS compared with the CKD Stage 3 group at baseline and after the intervention. Hb was increased only in the CKD Stage 3 group after the trial (p = .032). Acrolein did not differ between the different CKD stage groups. Patients with improved GFR (responders) (about 77%) and nonresponders had similar baseline GFR. Responders had higher acrolein and PFOA levels throughout the study and a more significant reduction in acrolein, indicating a better digestion function. Responders had higher acrolein and PFOA levels throughout the study and a more significant reduction in acrolein, while PFOA increased in responders. Both the higher PFOA and lower acrolein may be related to improved eGFR (and possibly to improvements in proteinuria, which we did not measure. Proteinuria is associated with PFAS loss in the urine), AC-134 showed the potential to improve the GFR and decrease acrolein, which might better indicate renal function change. Future studies are needed with longer follow-ups.

20.
J Vis Exp ; (206)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38682933

Zebrafish serve as valuable models for research on growth, immunity, and gut microbiota due to their genomic similarities with mammals, transparent embryos developed in a relatively clean chorion environment, and extremely rapid development of larvae compared to rodent models. Germ-free (GF) zebrafish (Danio rerio) are crucial for evaluating pollutant toxicity and establishing human-like disease models related to microbial functions. In comparison to conventionally raised (CR) models (fish in common husbandry), GF zebrafish allow for more accurate manipulation of the host microbiota, aiding in determining the causal relationship between microorganisms and hosts. Consequently, they play a critical role in advancing our understanding of these relationships. However, GF zebrafish models are typically generated and researched during the early life stages (from embryos to larvae) due to limitations in immune function and nutrient absorption. This study optimizes the generation, maintenance, and identification of early GF zebrafish models without feeding and with long-term feeding using GF food (such as Artemia sp., brine shrimp). Throughout the process, daily sampling and culture were performed and identified through multiple detections, including plates and 16S rRNA sequencing. The aseptic rate, survival, and developmental indexes of GF zebrafish were recorded to ensure the quality and quantity of the generated models. Importantly, this study provides details on bacterial isolation and infection techniques for GF fish, enabling the efficient creation of GF fish models from larvae to juvenile stages with GF food support. By applying these procedures in biomedical research, scientists can better understand the relationships between intestinal bacterial functions and host health.


Germ-Free Life , Larva , Models, Animal , Zebrafish , Animals , Zebrafish/microbiology , Larva/microbiology , Larva/growth & development , Female , Male
...