Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 89
1.
ACS Omega ; 9(17): 19345-19352, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38708249

Madecassoside, a triterpenoid saponin compound mainly isolated from the gotu kola herb (Centella asiatica), shows an extensive range of biological activities, including antiapoptotic, antioxidant, anti-inflammatory, moisturizing, neuroprotective, and wound healing effects. It has been highly used in the management of eczema, skin wounds, and other diseases. Due to poor oral bioavailability, membrane permeability, and intestinal absorption, the clinical application of the madecassoside is limited. Hence, a drug carrier system is needed that not only sustains the release of the madecassoside but also overcomes the drawbacks associated with its administration. Therefore, the authors prepared novel pH-responsive chitosan-based nanogels for the sustained release of madecassoside. Free radical polymerization technique was used for cross-linking of polymer chitosan and monomer methacrylic acid in the presence of cross-linker N',N'-methylene bis(acrylamide). The decrease in polymer crystallinity after polymerization and development of nanogels was demonstrated by XRD and FTIR analysis. The effects of nanogel contents on polymer volume, sol-gel analysis, swelling, drug loading, and release were investigated. Results indicated that high swelling and maximum release of the drug occurred at pH 7.4 compared to pH 1.2 and 4.6, indicating the excellent pH-sensitive nature of the engineered nanogels. High swelling and drug release were perceived with the integration of a high quantity of chitosan, while a decline was observed with the high integration of N',N'-methylene bis(acrylamide) and methacrylic acid contents. The same effects of nanogel contents were shown for drug loading too. Sol fraction was reduced, while gel fraction was enhanced by increasing the chitosan load, N',N'-methylene bis(acrylamide), and methacrylic acid. The Korsmeyer-Peppas model of kinetics was trailed by all nanogel formulations with non-Fickian diffusion. The results demonstrated that prepared nanogels can be employed for sustained release of the madecassoside.

2.
Article En | MEDLINE | ID: mdl-38623980

AIM AND OBJECTIVE: The aim of this study was to prepare polyvinyl alcohol/acrylic acid (PVA/AA) hydrogels for the controlled release of diclofenac sodium and to develop PVA/AA hydrogels as controlled release carriers to overcome not only the side effects of diclofenac sodium but also sustain its release for an extended period. BACKGROUND: Diclofenac sodium is employed for relieving pain and fever. The half-life of diclofenac sodium is very short (1-2 h). Hence, multiple intakes of diclofenac sodium are required to maintain a constant pharmacological action. Multiple GI adverse effects are produced as a result of diclofenac sodium intake. METHOD: A free radical polymerization technique was used for crosslinking PVA with AA in the presence of APS. EGDMA was used as a cross-linker. FTIR and XRD confirmed the preparation and loading of the drug by prepared hydrogels. An increase in the thermal stability of PVA was shown by TGA and DSC analysis. Surface morphology was investigated by SEM. Similarly, water penetration and drug loading were demonstrated by porosity and drug loading studies. The pH-sensitive nature of PVA/AA hydrogels was investigated at different pH values by swelling and drug release studies. RESULTS: The development and drug loading of PVA/AA hydrogels were confirmed by FTIR and XRD analysis. TGA and DSC indicated high thermal stability of prepared hydrogels as compared to unreacted PVA. SEM indicated a hard and compact network of developed hydrogels. The swelling and drug release studies indicated maximum swelling and drug release at high pH as compared to low pH values, indicating the pH-sensitive nature of prepared hydrogels. Moreover, we demonstrated that drug release was sustained for a prolonged time in a controlled pattern by prepared hydrogels by comparing the drug release of the developed hydrogels with the commercial product Cataflam. CONCLUSION: The results indicated that prepared PVA/AA hydrogels can be used as an alternative approach for the controlled delivery of diclofenac sodium.

3.
Article En | MEDLINE | ID: mdl-38204236

BACKGROUND: Buspirone is used for the management of depression and anxiety disorders. Due to its short half-life and low bioavailability, it requires multiple daily doses and is associated with some side effects. AIM: This study aimed to develop chitosan-based hydrogels as drug-controlled release carriers. OBJECTIVE: The objective of this study is to prepare chitosan-based hydrogels as controlled release carriers in order to overcome the side effects of buspirone HCl and improve patients' compliance and their life quality. METHODS: Polymer chitosan was polymerized with two monomers, acrylic acid and itaconic acid, to synthesize pH-sensitive hydrogel. The Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis were performed to confirm the structure formation and thermal stability. Water penetration capability and loading of the drug were performed by porosity and drug loading studies. The swelling and dissolution tests were performed to analyze the pH-sensitive nature of the developed hydrogels. RESULTS: FTIR, TGA, and DSC demonstrated that the chitosan-based hydrogels were successfully prepared. An increase in water penetration and drug loading into the hydrogel network was seen with the high incorporation of chitosan, acrylic acid, and itaconic acid. The swelling and dissolution studies revealed that prepared hydrogel offered the greatest swelling and drug release at a high pH of 7.4. The swelling and drug release from the hydrogel were affected by the concentrations of the incorporated contents. A controlled release of the drug was achieved by using chitosan-based hydrogel as a delivery carrier compared to commercial tablets of buspirone. CONCLUSION: The results showed that the developed chitosan-based hydrogel can be considered one of the most suitable drug carrier systems for the controlled delivery of buspirone.

4.
Curr Pharm Des ; 29(31): 2489-2500, 2023.
Article En | MEDLINE | ID: mdl-37881070

BACKGROUND: Diclofenac sodium has a short half-life (about 1.5 hours), requiring repeated administration, and as a result, serious complications, such as GI bleeding, peptic ulcer, and kidney and liver dysfunction, are generated. Hence, a sustained/controlled drug delivery system is needed to overcome the complications caused by the administration of diclofenac sodium. AIMS: This study aimed to fabricate and evaluate carbopol/polyvinyl alcohol-based pH-sensitive hydrogels for controlled drug delivery. OBJECTIVE: pH-sensitive carbopol/polyvinyl alcohol graft-poly(acrylic acid) hydrogels (Cp/PVA-g-PAa hydrogels) were developed for the controlled delivery of diclofenac sodium. METHODS: The combination of carbopol/polyvinyl alcohol, acrylic acid, and ethylene glycol dimethacrylate was used as polymer, monomer, and cross-linker, respectively. The effects of the formulation's composition on porosity, swelling index, and release pattern of diclofenac sodium from the developed hydrogels were investigated. RESULTS: An increase in porosity and swelling was observed with the increasing amounts of carbopol and acrylic acid, whereas polyvinyl alcohol showed the opposite effect. Due to the formation of a highly viscous system, the drug release decreased with the increasing concentrations of carbopol and polyvinyl alcohol while increased with increasing acrylic acid concentration. The pH-responsive properties of the fabricated hydrogels were demonstrated by dynamic swelling and drug release studies at three different pH values. Higher dynamic swelling and diclofenac sodium (model drug) release were found at high pH values compared to low pH values, i.e., pH 7.4 > 4.6 > 1.2, respectively. Cytotoxicity studies reported no toxic effect of the prepared hydrogels, thus indicating that the prepared hydrogels are safe to be used on clinical basis. CONCLUSION: The prepared carbopol/polyvinyl alcohol crosslinked hydrogel can be used as a promising carrier for the controlled release of drugs.


Diclofenac , Polyvinyl Alcohol , Humans , Polyvinyl Alcohol/chemistry , Polyvinyl Alcohol/pharmacology , Cross-Linking Reagents/chemistry , Cross-Linking Reagents/pharmacology , Drug Delivery Systems , Hydrogels/chemistry , Hydrogen-Ion Concentration , Drug Liberation
5.
Gels ; 9(8)2023 Aug 08.
Article En | MEDLINE | ID: mdl-37623095

Smart and intelligent xanthan gum/pluronic F-127 hydrogels were fabricated for the controlled delivery of atomoxetine HCl. Different parameters such as DSC, TGA, FTIR, XRD, SEM, drug loading, porosity, swelling index, drug release, and kinetics modeling were appraised for the prepared matrices of hydrogels. FTIR confirmed the successful synthesis of the hydrogel, while TGA and DSC analysis indicated that the thermal stability of the reagents was improved after the polymerization technique. SEM revealed the hard surface of the hydrogel, while XRD indicated a reduction in crystallinity of the reagents. High gel fraction was achieved with high incorporated contents of the polymers and the monomer. An increase in porosity, drug loading, swelling, and drug release was observed with the increase in the concentrations of xanthan gum and acrylic acid, whereas Pluronic F-127 showed the opposite effect. A negligible swelling index was shown at pH 1.2 and 4.6 while greater swelling was observed at pH 7.4, indicating a pH-responsive nature of the designed hydrogels. Furthermore, a higher drug release was found at pH 7.4 compared to pH 1.2 and 4.6, respectively. The first kinetics order was followed by the prepared hydrogel formulations. Thus, it is signified from the discussion that smart xanthan gum/pluronic F-127 hydrogels have the potential to control the release of the atomoxetine HCl in the colon for an extended period of time.

6.
ACS Omega ; 8(26): 23991-24002, 2023 Jul 04.
Article En | MEDLINE | ID: mdl-37426260

The objective of this study is to design a polymeric network of nanogels for sustained release of caffeine. Therefore, alginate-based nanogels were fabricated by a free-radical polymerization technique for the sustained delivery of caffeine. Polymer alginate was crosslinked with monomer 2-acrylamido-2-methylpropanesulfonic acid by crosslinker N',N'-methylene bisacrylamide. The prepared nanogels were subjected to sol-gel fraction, polymer volume fraction, swelling, drug loading, and drug release studies. A high gel fraction was seen with the increasing feed ratio of polymer, monomer, and crosslinker. Greater swelling and drug release were observed at pH 4.6 and 7.4 as compared to pH 1.2 due to the deprotonation and protonation of functional groups of alginate and 2-acrylamido-2-methylpropanesulfonic acid. An increase was observed in swelling, loading, and release of the drug with the incorporation of a high feed ratio of polymer and monomer, while a reduction was seen with the increase in crosslinker feed ratio. Similarly, an HET-CAM test was used to evaluate the safety of the prepared nanogels, which showed that the prepared nanogels have no toxic effect on the chorioallantoic membrane of fertilized chicken eggs. Similarly, different characterizations techniques such as FTIR, DSC, SEM, and particle size analysis were carried out to determine the development, thermal stability, surface morphology, and particle size of the synthesized nanogels, respectively. Thus, we can conclude that the prepared nanogels can be used as a suitable agent for the sustained release of caffeine.

7.
Pharmaceutics ; 15(5)2023 May 09.
Article En | MEDLINE | ID: mdl-37242688

Linalool is an aromatic oil with analgesic, anti-inflammatory and anti-UVB-induced skin damage effects. The aim of this study was to develop a linalool-loaded microemulsion formulation for topical application. In order to quickly obtain an optimal drug-loaded formulation, statistical tools of the response surface methodology and a mixed experimental design with four independent variables of oil (X1), mixed surfactant (X2), cosurfactant (X3) and water (X4) were used to design a series of model formulations in order to analyze the effect of the composition on the characteristics and permeation capacity of linalool-loaded microemulsion formulations and to obtain an appropriate drug-loaded formulation. The results showed that the droplet size, viscosity and penetration capacity of linalool-loaded formulations were significantly affected by formulation component proportions. The skin deposition amount of the drug and flux of such formulations expressively increased about 6.1-fold and 6.5-fold, respectively, when compared to the control group (5% linalool dissolved in ethanol). After 3 months of storage, the physicochemical characteristics and drug level did not show a significant change. The linalool formulation-treated rat skin showed non-significant irritation compared to skin treatments in the distilled-water-treated group. The results showed that specific microemulsion applications might be considered as potential drug delivery carriers for essential oil topical application.

8.
Pharmaceutics ; 14(10)2022 Oct 02.
Article En | MEDLINE | ID: mdl-36297545

This study investigates pH-sensitive hydrogels based on biocompatible, biodegradable polysaccharides and natural polymers such as chondroitin sulfate and alginate in combination with synthetic monomer such as acrylic acid, as controlled drug carriers. Investigations were conducted for chondroitin sulfate/alginate-graft-poly(acrylic acid) hydrogel in various mixing ratios of chondroitin sulfate, alginate and acrylic acid in the presence of ammonium persulfate and N',N'-Methylene bisacrylamide. Crosslinking and loading of drug were confirmed by Fourier transform infrared spectroscopy. Thermal stability of both polymers was enhanced after crosslinking as indicated by thermogravimetric analysis and differential scanning calorimeter thermogram of developed hydrogel. Similarly, surface morphology was evaluated by scanning electron microscopy, whereas crystallinity of the polymers and developed hydrogel was investigated by powder X-ray diffraction. Furthermore, swelling and drug-release studies were investigated in acidic and basic medium of pH 1.2 and 7.4 at 37 °C, respectively. Maximum swelling and drug release were detected at pH 7.4 as compared to pH 1.2. Increased incorporation of hydrogel contents led to an increase in porosity, drug loading, and gel fraction while a reduction in sol fraction was seen. The polymer volume fraction was found to be low at pH 7.4 compared to pH 1.2, indicating a prominent and greater swelling of the prepared hydrogels at pH 7.4. Likewise, a biodegradation study revealed a slow degradation rate of the developed hydrogel. Hence, we can conclude from the results that a fabricated system of hydrogel could be used as a suitable carrier for the controlled delivery of ketorolac tromethamine.

9.
Int J Pharm ; 626: 122194, 2022 Oct 15.
Article En | MEDLINE | ID: mdl-36113744

The aim of the current study was to prepare glutamic acid crosslinked poly(itaconic acid/methacrylic acid) microgels for pH-responsive delivery of ketorolac tromethamine, using aqueous free radical polymerization technique. The polymerization of polymer with monomers was carried out by a crosslinking agent N', N'-methylene bisacrylamide in the presence of initiator ammonium persulfate. The prepared microgels were characterized for structure, surface morphology, thermal stability, and crystallinity. Similarly, studies such as sol-gel analysis, drug loading, and polymer volume fraction were performed for the fabricated microgels. The pH-sensitivity of the developed microgels was investigated at three different pH values i.e., pH 1.2, 4.6, and 7.4 by swelling and in-vitro drug release studies. Maximum swelling and drug release were found at pH 7.4 as compared to pH 1.2 and 4.6, which indicated the pH-sensitive nature of the prepared microgels. The toxicity of the prepared microgels was evaluated by cell line and HET-CAM test, which demonstrated no toxic effect of the prepared microgels. In-vivo study was carried out on rabbits and high plasma concentration was reported for the drug loaded microgels as compared to drug solution and commercial product Keten. Hence, the prepared microgel system could be employed as an excellent carrier for the controlled drug delivery system.


Microgels , Animals , Glutamic Acid , Hydrogen-Ion Concentration , Ketorolac Tromethamine , Polymers/chemistry , Rabbits
10.
Pharmaceutics ; 14(9)2022 Sep 03.
Article En | MEDLINE | ID: mdl-36145612

The aim of the current investigation was based on the development of pH-responsive hydrogels of chondroitin sulfate, carbopol, and polyvinyl alcohol polymerized with acrylic acid in the presence of ammonium persulfate and ethylene glycol dimethylacrylate for controlled drug delivery. A free radical polymerization technique was used for the preparation of these pH-responsive hydrogels. The gel fraction of the prepared hydrogels was increased with the increase in the chondroitin sulfate, carbopol, polyvinyl alcohol, and acrylic acid content, while the sol-fraction was decreased. Swelling and drug release studies were performed in various pH conditions. Greater swelling and drug release were observed at high pH values (pH 4.6 and 7.4) as compared to low pH value (pH 1.2), representing the pH-responsive nature of the synthesized hydrogels. Porosity and drug loading were increased with the incorporation of high concentrations of hydrogel contents except polyvinyl alcohol, which showed reverse effects. Similarly, biodegradation study reported a slow degradation rate of the prepared hydrogels with the increase in hydrogel constituents. Cytotoxicity study proved the safe use of developed hydrogels as no toxic effect was shown on T84 human colon cancer cells. Similarly, various characterizations, including Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy, were performed for prepared hydrogels. Hence, we could demonstrate that the prepared hydrogels can be used as a promising drug carrier for the controlled delivery of drugs.

11.
Gels ; 8(8)2022 Aug 19.
Article En | MEDLINE | ID: mdl-36005122

Acetaminophen is an odorless and white crystalline powder drug, used in the management of fever, pain, and headache. The half-life of acetaminophen is very short; thus, multiple intakes of acetaminophen are needed in a day to maintain a constant pharmacological action for an extended period of time. Certain severe adverse effects are produced due to the frequent intake of acetaminophen, especially hepatotoxicity and skin rashes. Therefore, a drug carrier system is needed which not only prolongs the release of acetaminophen, but also enhances the patient compliance. Therefore, the authors prepared novel aspartic acid-graft-poly(acrylic acid) hydrogels for the controlled release of acetaminophen. The novelty of the prepared hydrogels is based on the incorporation of pH-sensitive monomer acrylic acid with polymer aspartic acid in the presence of ethylene glycol dimethacrylate. Due to the pH-sensitive nature, the release of acetaminophen was prolonged for an extended period of time by the developed hydrogels. Hence, a series of studies was carried out for the formulated hydrogels including sol-gel fraction, FTIR, dynamic swelling, polymer volume analysis, thermal analysis, percent porosity, SEM, in vitro drug release studies, and PXRD analysis. FTIR analysis confirmed the grafting of acrylic acid onto the backbone of aspartic acid and revealed the development of hydrogels. The thermal studies revealed the high thermal stability of the fabricated hydrogels as compared to pure aspartic acid. An irregular surface with a few pores was indicated by SEM. PXRD revealed the amorphous state of the developed hydrogels and confirmed the reduction in the crystallinity of the unreacted aspartic acid by the formulated hydrogels. An increase in gel fraction was observed with the increasing concentration of aspartic acid, acrylic acid, and ethylene glycol dimethacrylate due to the availability of a high amount of free radicals. The porosity study was influenced by the various compositions of developed hydrogels. Porosity was increased due to the enhancement in the concentrations of aspartic acid and acrylic acid, whereas it decreased with the increase in ethylene glycol dimethacrylate concentration. Similarly, the pH-responsive properties of hydrogels were evaluated by dynamic swelling and in vitro drug release studies at two different pH levels (1.2 and 7.4), and a greater dynamic swelling and acetaminophen release were exhibited at pH 7.4 as compared to pH 1.2. An increase in swelling, drug loading, and drug release was seen with the increased incorporation of aspartic acid and acrylic acid, whereas a decrease was detected with the increase in the concentration of ethylene glycol dimethacrylate. Conclusively, the formulated aspartic acid-based hydrogels could be employed as a suitable nonactive pharmaceutical ingredient for the controlled delivery of acetaminophen.

12.
Gels ; 8(7)2022 Jun 25.
Article En | MEDLINE | ID: mdl-35877491

Ibuprofen is an antipyretic and analgesic drug used for the management of different inflammatory diseases, such as rheumatoid arthritis and osteoarthritis. Due to a short half-life and rapid elimination, multiple doses of ibuprofen are required in a day to maintain pharmacological action for a long duration of time. Due to multiple intakes of ibuprofen, certain severe adverse effects, such as gastric irritation, bleeding, ulcers, and abdominal pain are produced. Therefore, a system is needed which not only prolongs the release of ibuprofen but also overcomes the drug's adverse effects. Hence, the authors have synthesized chondroitin sulfate/sodium polystyrene sulfonate-co-poly(acrylic acid) hydrogels by the free radical polymerization technique for the controlled release of ibuprofen. Sol-gel, porosity, swelling, and drug release studies were performed on the fabricated hydrogel. The pH-responsive behavior of the fabricated hydrogel was determined by both swelling and drug release studies in three different pH values, i.e., pH 1.2, 4.6, and 7.4. Maximum swelling and drug release were observed at pH 7.4, as compared to pH 4.6 and 1.2. Similarly, the structural arrangement and crosslinking of the hydrogel contents were confirmed by Fourier transform infrared spectroscopy (FTIR). Scanning electron microscopy (SEM) evaluated the hard and irregular surface with a few macrospores of the developed hydrogel, which may be correlated with the strong crosslinking of polymers with monomer content. Similarly, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) demonstrated the high thermal stability of the formulated hydrogel, as compared to pure polymers. A decrease in the crystallinity of chondroitin sulfate and sodium polystyrene sulfonate after crosslinking was revealed by powder X-ray diffraction (PXRD). Thus, considering the results, we can demonstrate that a developed polymeric network of hydrogel could be used as a safe, stable, and efficient carrier for the controlled release of ibuprofen.

13.
Gels ; 8(4)2022 Mar 26.
Article En | MEDLINE | ID: mdl-35448108

In this study, novel pH-responsive polymeric ß-cyclodextrin-graft-poly(acrylic acid/itaconic acid) hydrogels were fabricated by the free radical polymerization technique. Various concentrations of ß-cyclodextrin, acrylic acid, and itaconic acid were crosslinked by ethylene glycol dimethacrylate in the presence of ammonium persulfate. The crosslinked hydrogels were used for the controlled delivery of theophylline. Loading of theophylline was conducted by the absorption and diffusion method. The fabricated network of hydrogel was evaluated by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffractometry (XRD), and scanning electron microscopy (SEM). The crosslinking among hydrogel contents and drug loading by the fabricated hydrogel were confirmed by FTIR analysis, while TGA indicated a high thermal stability of the prepared hydrogel as compared to pure ß-cyclodextrin and itaconic acid. The high thermal stability of the developed hydrogel indicated an increase in the thermal stability of ß-cyclodextrin and itaconic acid after crosslinking. Similarly, a decrease in crystallinity of ß-cyclodextrin and itaconic acid was observed after crosslinking, as evaluated by XRD analysis. SEM revealed an irregular and hard surface of the prepared hydrogel, which may be correlated with strong crosslinking among hydrogel contents. Crosslinked insoluble and uncrosslinked soluble fractions of hydrogel were evaluated by sol-gel analysis. An increase in gel fraction was seen with the increase in compositions of hydrogel contents, while a decrease in sol fraction was observed. Dynamic swelling and dissolution studies were performed in three various buffer solutions of pH 1.2, 4.6, and 7.4, respectively. Maximum swelling and drug release were observed at higher pH values as compared to the lower pH value due to the deprotonation and protonation of functional groups of the hydrogel contents; thus, the pH-sensitive nature of the fabricated hydrogel was demonstrated. Likewise, water penetration capability and polymer volume were evaluated by porosity and polymer volume studies. Increased incorporation of ß-cyclodextrin, acrylic acid, and itaconic acid led to an increase in swelling, drug release, drug loading, and porosity of the fabricated hydrogel, whereas a decrease was detected with the increasing concentration of ethylene glycol dimethacrylate. Conclusively, the prepared hydrogel could be employed as a suitable and promising carrier for the controlled release of theophylline.

14.
Gels ; 8(3)2022 Mar 03.
Article En | MEDLINE | ID: mdl-35323268

In the current research work, pH-sensitive hydrogels were prepared via a free radical polymerization technique for the targeted delivery of 5-aminosalicylic acid to the colon. Various proportions of chitosan, ß-Cyclodextrin, and acrylic acid were cross-linked by ethylene glycol dimethacrylate. Ammonium persulfate was employed as an initiator. The development of a new polymeric network and the successful encapsulation of the drug were confirmed by Fourier transform infrared spectroscopy. Thermogravimetric analysis indicated high thermal stability of the hydrogel compared to pure chitosan and ß-Cyclodextrin. A rough and hard surface was revealed by scanning electron microscopy. Similarly, the crystallinity of the chitosan, ß-Cyclodextrin, and fabricated hydrogel was evaluated using powder X-ray diffraction. The swelling and drug release studies were performed in both acidic and basic medium (pH 1.2 and 7.4, respectively) at 37 °C. High swelling and drug release was observed at pH 7.4 as compared to pH 1.2. The increased incorporation of chitosan, ß-Cyclodextrin, and acrylic acid led to an increase in porosity, swelling, loading, drug release, and gel fraction of the hydrogel, whereas a decrease in sol fraction was observed. Thus, we can conclude from the results that a developed pH-sensitive network of hydrogel could be employed as a promising carrier for targeted drug delivery systems.

15.
Expert Rev Vaccines ; 21(5): 601-608, 2022 05.
Article En | MEDLINE | ID: mdl-35112938

BACKGROUND: Following COVID-19 vaccination, several herpes zoster cases have been reported, making it critical to explore the association between herpes zoster and COVID-19 vaccination. This is especially true in the context of increasing the number of participants enrolled to receive COVID-19 vaccination. RESEARCH DESIGN AND METHODS: Three databases, including the Cochrane Library, PubMed, and EMBASE, were searched for relevant studies before 25 December 2021 according to preliminarily determined inclusion and exclusion criteria without any language limitations. Four cohort studies were included in this systematic review and meta-analysis. RESULTS: Compared with the placebo group, there was no evidence that the COVID-19 vaccination group was associated with increased incidence of herpes zoster (Risk ratio [RR]: 1.06; 95% confidence interval [CI]: 0.91 to 1.24). There is no evidence that the COVID-19 vaccination from Moderna is associated with the incidence of herpes zoster compared with vaccination from Pfizer (RR: 0.20; 95% CI: 0.01 to 2.99). CONCLUSIONS: To date, there is no evidence of an association between covid-19 vaccination and herpes zoster.


COVID-19 , Herpes Zoster Vaccine , Herpes Zoster , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Herpes Zoster/epidemiology , Herpes Zoster/prevention & control , Herpes Zoster Vaccine/adverse effects , Herpesvirus 3, Human , Humans , Vaccination
16.
Pharmaceuticals (Basel) ; 14(12)2021 Nov 27.
Article En | MEDLINE | ID: mdl-34959634

Genistein, the most abundant isoflavone of the soy-derived phytoestrogen compounds, is a potent antioxidant and inhibitor of tyrosine kinase, which can inhibit UVB-induced skin carcinogenesis in hairless mice and UVB-induced erythema on human skin. In current study, genistein-loaded microemulsions were developed by using the various compositions of oil, surfactants, and co-surfactants and used as a drug delivery carrier to improve the solubility, peremability, skin whitening, and bioavailbility of genistein. The mean droplet size and polydispersity index of all formulations was less than 100 nm and 0.26 and demonstrated the formation of microemulsions. Similarly, various studies, such as permeation, drug skin deposition, pharmacokinetics, skin whitening test, skin irritation, and stability, were also conducted. The permeability of genistein was significantly affected by the composition of microemulsion formulation, particular surfactnat, and cosurfactant. In-vitro permeation study revealed that both permeation rate and deposition amount in skin were significantly increased from 0.27 µg/cm2·h up to 20.00 µg/cm2·h and 4.90 up to 53.52 µg/cm2, respectively. In in-vivo whitening test, the change in luminosity index (ΔL*), tended to decrease after topical application of genistein-loaded microemulsion. The bioavailability was increased 10-fold by topical administration of drug-loaded microemulsion. Conclusively, the prepared microemulsion has been enhanced the bioavailability of genistein and could be used for clinical purposes.

17.
Int J Biol Macromol ; 192: 958-966, 2021 Dec 01.
Article En | MEDLINE | ID: mdl-34656537

The current study was conducted to evaluate and analyze the effect of alginate, itaconic acid, and N,N'-methylene bisacrylamide in formulation of a novel alginate based microgels for sustained release of theophylline. The fabricated microgels were characterized by PXRD, SEM, FTIR, TGA and DSC respectively. FTIR revealed that alginate reacted with itaconic acid during polymerization reaction and confirmed the overlapping of itaconic acid on the backbone of alginate. TGA and DSC depicted high thermal stability of the fabricated microgels as compared to pure unreacted polymer and monomer. Likewise, dynamic swelling and percent drug release studies were carried out at different pH media i.e., pH 1.2, 4.6 and 7.4 respectively. Greater dynamic swelling and percent drug release was observed at higher pH 7.4 as compared to lower pH 4.6 and 1.2 due to the deprotonation of COOH groups of both alginate and itaconic acid respectively. The drug release mechanism from the fabricated microgels could be described by first order model. In-vivo pharmacokinetic study was performed on rabbits and exhibited sustained release in rabbits. Hence, the developed microgels indicated higher potential as the delivery system for the sustained delivery of theophylline.


Alginates/chemistry , Drug Carriers/chemistry , Drug Delivery Systems , Microgels/chemistry , Animals , Chemical Phenomena , Chromatography, High Pressure Liquid , Delayed-Action Preparations , Drug Carriers/chemical synthesis , Drug Compounding , Drug Liberation , Kinetics , Male , Molecular Structure , Polymers , Rabbits , Spectrum Analysis , Thermogravimetry
18.
Gels ; 7(4)2021 Oct 13.
Article En | MEDLINE | ID: mdl-34698162

Ketorolac tromethamine is a non-steroidal anti-inflammatory drug used in the management of severe pain. The half-life of Ketorolac tromethamine is within the range of 2.5-4 h. Hence, repeated doses of Ketorolac tromethamine are needed in a day to maintain the therapeutic level. However, taking several doses of Ketorolac tromethamine in a day generates certain complications, such as acute renal failure and gastrointestinal ulceration. Therefore, a polymeric-controlled drug delivery system is needed that could prolong the release of Ketorolac tromethamine. Therefore, in the current study, pH-responsive carbopol 934/sodium polystyrene sulfonate-co-poly(acrylic acid) (CP/SpScPAA) hydrogels were developed by the free radical polymerization technique for the controlled release of Ketorolac tromethamine. Monomer acrylic acid was crosslinked with the polymers carbopol 934 and sodium polystyrene sulfonate by the cross-linker N',N'-methylene bisacrylamide. Various studies were conducted to evaluate and assess the various parameters of the fabricated hydrogels. The compatibility of the constituents used in the preparation of hydrogels was confirmed by FTIR analysis, whereas the thermal stability of the unreacted polymers and developed hydrogels was analyzed by TGA and DSC, respectively. A smooth and porous surface was indicated by SEM. The crystallinity of carbopol 934, sodium polystyrene sulfonate, and the prepared hydrogels was evaluated by PXRD, which revealed a reduction in the crystallinity of reactants for the developed hydrogels. The pH sensitivity of the polymeric hydrogel networks was confirmed by dynamic swelling and in vitro release studies with two different pH media i.e., pH 1.2 and 7.4, respectively. Maximum swelling was exhibited at pH 7.4 compared to pH 1.2 and, likewise, a greater percent drug release was perceived at pH 7.4. Conclusively, we can demonstrate that the developed pH-sensitive hydrogel network could be employed as a suitable carrier for the controlled delivery of Ketorolac tromethamine.

19.
Polymers (Basel) ; 13(20)2021 Oct 14.
Article En | MEDLINE | ID: mdl-34685304

Glutamic acid-co-poly(acrylic acid) (GAcPAAc) hydrogels were prepared by the free radical polymerization technique using glutamic acid (GA) as a polymer, acrylic acid (AAc) as a monomer, ethylene glycol dimethylacrylate (EGDMA) as a cross-linker, and ammonium persulfate (APS) as an initiator. Increase in gel fraction was observed with the increasing concentration of glutamic acid, acrylic acid, and ethylene glycol dimethylacrylate. High percent porosity was indicated by developed hydrogels with the increase in the concentration of glutamic acid and acrylic acid, while a decrease was seen with the increasing concentration of EGDMA, respectively. Maximum swelling and drug release was exhibited at high pH 7.4 compared to low pH 1.2 by the newly synthesized hydrogels. Similarly, both swelling and drug release increased with the increasing concentration of glutamic acid and acrylic acid and decreased with the increase in ethylene glycol dimethylacrylate concentration. The drug release was considered as non-Fickian transport and partially controlled by viscoelastic relaxation of hydrogel. In-vivo study revealed that the AUC0-∞ of fabricated hydrogels significantly increased compared to the drug solution and commercial product Keten. Hence, the results indicated that the developed hydrogels could be used as a suitable carrier for controlled drug delivery.

20.
Int J Pharm ; 607: 121030, 2021 Sep 25.
Article En | MEDLINE | ID: mdl-34438007

The aim of the study was to prepare catechin-loaded transfersomes to enhance drug permeability through topical administration for the skin protection against ultraviolet radiation induced photo-damage. The results showed that the catechin-loaded transfersomes were monodispersed with polydispersity index (PDI) < 0.2, <200 nm in particle size and with high encapsulation efficiency (E.E.%) greater than 85%. The in vitro skin permeation test indicated that the catechin-loaded transfersomes enhanced the skin permeability by 85% compared to the catechin aqueous solution. Similarly, the in-vivo skin whitening study demonstrated that F5 transfersome formulation was effective in tyrosinase inhibition and had good biocompatibility to the guinea pig skin. Finally, the stability study showed that both physicochemical properties and E.E.% of the F5 transferosome formulation were fairly stable after 3 months storage. Therefore, topical administration of catechin-loaded transfersomes could be considered as a potential strategy for the treatment of UV-induced oxidative damage to the skin.


Catechin , Administration, Cutaneous , Drug Carriers , Particle Size , Permeability , Skin , Ultraviolet Rays
...