Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 44
1.
Ecotoxicol Environ Saf ; 278: 116400, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38718725

Evidence increasingly suggests molybdenum exposure at environmental levels is still associated with adverse human health, emphasizing the necessity to establish a more protective reference dose (RfD). Herein, we conducted a study measuring 15 urinary metals and 30 clinical health indicators in 2267 participants residing near chemical enterprises across 11 Chinese provinces to investigate their relationships. The kidney and cystatin-C emerged as the most sensitive organ and critical effect indicator of molybdenum exposure, respectively. Odds of cystatin-C-defined chronic kidney disease (CKD) in the highest quantile of molybdenum exposure significantly increased by 133.5% (odds ratio [OR]: 2.34, 95% CI: 1.78, 3.11) and 75.8% (OR: 1.76, 95% CI: 1.24, 2.49) before and after adjusting for urinary 14 metals, respectively. Intriguingly, cystatin-C significantly mediated 15.9-89.5% of molybdenum's impacts on liver and lung function, suggesting nephrotoxicity from molybdenum exposure may trigger hepatotoxicity and pulmonary toxicity. We derived a new RfD for molybdenum exposure (0.87 µg/kg-day) based on cystatin-C-defined estimated glomerular filtration rate by employing Bayesian Benchmark Dose modeling analysis. This RfD is significantly lower than current exposure guidance values (5-30 µg/kg-day). Remarkably, >90% of participants exceeded the new RfD, underscoring the significant health impacts of environmental molybdenum exposure on populations in industrial regions of China.


Molybdenum , Molybdenum/urine , Molybdenum/toxicity , Molybdenum/analysis , Humans , China/epidemiology , Female , Male , Adult , Middle Aged , Environmental Exposure/statistics & numerical data , Environmental Exposure/analysis , Cystatin C , Risk Assessment , Environmental Pollutants/urine , Environmental Pollutants/analysis , Young Adult , Bayes Theorem , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/chemically induced , Aged , Chemical Industry , Kidney/drug effects , Glomerular Filtration Rate/drug effects
2.
J Hazard Mater ; 470: 134226, 2024 May 15.
Article En | MEDLINE | ID: mdl-38593665

Contaminants may induce immune response polarization, leading to immune diseases, such as allergic diseases. Evidence concerning the effects of chlorinated paraffins (CPs), an emerging persistent organic pollutant, on immune system is scarce, particularly for epidemiological evidence. This study explores the association between CPs exposure and allergic diseases (allergic rhinitis, atopic eczema, and allergic conjunctivitis) in children and adolescents in the Pearl River Delta (PRD) in China. Herein, 131,304 children and adolescents from primary and secondary schools in the PRD were included and completed the questionnaire survey. The particulate matter (PM) samples were collected in the PRD and the PM2.5-bound CP concentrations were analyzed. In the multivarious adjustment mixed effect model (MEM), an IQR increase in ∑CPs was significantly associated with allergic diseases (rhinitis, eczema, and conjunctivitis) with the estimated odds ratios (ORs) for 1.11 (95% CI: 1.10, 1.13), 1.17 (95% CI: 1.15, 1.19), and 1.82 (95% CI: 1.76, 1.88), respectively. Interaction analysis indicated that overweight and obese individuals might have greater risk. Similar effect estimates were observed in several sensitivity analyses. This study provided epidemiological evidence on the immunotoxicity of CPs. More studies to confirm our findings and investigate mechanisms are needed.


Paraffin , Humans , Adolescent , Child , Male , Female , China/epidemiology , Paraffin/toxicity , Paraffin/analysis , Hypersensitivity/epidemiology , Environmental Exposure/adverse effects , Hydrocarbons, Chlorinated/toxicity , Hydrocarbons, Chlorinated/analysis , Air Pollutants/toxicity , Air Pollutants/analysis , Particulate Matter/toxicity , Particulate Matter/analysis , Dermatitis, Atopic/epidemiology , Dermatitis, Atopic/chemically induced , Rhinitis, Allergic/epidemiology , Rhinitis, Allergic/chemically induced
3.
J Hazard Mater ; 470: 134161, 2024 May 15.
Article En | MEDLINE | ID: mdl-38569338

BACKGROUND: Exposure to PM2.5 has been linked to neurodegenerative diseases, with limited understanding of constituent-specific contributions. OBJECTIVES: To explore the associations between long-term exposure to PM2.5 constituents and neurodegenerative diseases. METHODS: We recruited 148,274 individuals aged ≥ 60 from four cities in the Pearl River Delta region, China (2020 to 2021). We calculated twenty-year average air pollutant concentrations (PM2.5 mass, black carbon (BC), organic matter (OM), ammonium (NH4+), nitrate (NO3-) and sulfate (SO42-)) at the individuals' home addresses. Neurodegenerative diseases were determined by self-reported doctor-diagnosed Alzheimer's disease (AD) and Parkinson's disease (PD). Generalized linear mixed models were employed to explore associations between pollutants and neurodegenerative disease prevalence. RESULTS: PM2.5 and all five constituents were significantly associated with a higher prevalence of AD and PD. The observed associations generally exhibited a non-linear pattern. For example, compared with the lowest quartile, higher quartiles of BC were associated with greater odds for AD prevalence (i.e., the adjusted odds ratios were 1.81; 95% CI, 1.45-2.27; 1.78; 95% CI, 1.37-2.32; and 1.99; 95% CI, 1.54-2.57 for the second, third, and fourth quartiles, respectively). CONCLUSIONS: Long-term exposure to PM2.5 and its constituents, particularly combustion-related BC, OM, and SO42-, was significantly associated with higher prevalence of AD and PD in Chinese individuals. ENVIRONMENTAL IMPLICATION: PM2.5 is a routinely regulated mixture of multiple hazardous constituents that can lead to diverse adverse health outcomes. However, current evidence on the specific contributions of PM2.5 constituents to health effects is scarce. This study firstly investigated the association between PM2.5 constituents and neurodegenerative diseases in the moderately to highly polluted Pearl River Delta region in China, and identified hazardous constituents within PM2.5 that have significant impacts. This study provides important implications for the development of targeted PM2.5 prevention and control policies to reduce specific hazardous PM2.5 constituents.


Air Pollutants , Environmental Exposure , Particulate Matter , Particulate Matter/analysis , China/epidemiology , Humans , Aged , Air Pollutants/analysis , Environmental Exposure/adverse effects , Female , Male , Middle Aged , Neurodegenerative Diseases/epidemiology , Neurodegenerative Diseases/chemically induced , Alzheimer Disease/epidemiology , Alzheimer Disease/chemically induced , Aged, 80 and over , Parkinson Disease/epidemiology , Parkinson Disease/etiology , Air Pollution/adverse effects , Air Pollution/analysis , Prevalence
4.
Thorax ; 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38388490

BACKGROUND: There is growing interest in the joint effects of hazardous trace elements (HTEs) on lung function deficits, but the data are limited. This is a critical research gap given increased global industrialisation. METHODS: A national cross-sectional study including spirometry was performed among 2112 adults across 11 provinces in China between 2020 and 2021. A total of 27 HTEs were quantified from urine samples. Generalised linear models and quantile-based g-computation were used to explore the individual and joint effects of urinary HTEs on lung function, respectively. RESULTS: Overall, there were negative associations between forced expiratory volume in 1 s (FEV1) and urinary arsenic (As) (z-score coefficient, -0.150; 95% CI, -0.262 to -0.038 per 1 ln-unit increase), barium (Ba) (-0.148, 95% CI: -0.258 to -0.039), cadmium (Cd) (-0.132, 95% CI: -0.236 to -0.028), thallium (Tl) (-0.137, 95% CI: -0.257 to -0.018), strontium (Sr) (-0.147, 95% CI: -0.273 to -0.022) and lead (Pb) (-0.121, 95% CI: -0.219 to -0.023). Similar results were observed for forced vital capacity (FVC) with urinary As, Ba and Pb and FEV1/FVC with titanium (Ti), As, Sr, Cd, Tl and Pb. We found borderline associations between the ln-quartile of joint HTEs and decreased FEV1 (-20 mL, 95% CI: -48 to +8) and FVC (-14 mL, 95% CI: -49 to+2). Ba and Ti were assigned the largest negative weights for FEV1 and FVC within the model, respectively. CONCLUSION: Our study investigating a wide range of HTEs in a highly polluted setting suggests that higher urinary HTE concentrations are associated with lower lung function, especially for emerging Ti and Ba, which need to be monitored or regulated to improve lung health.

5.
Environ Res ; 248: 118305, 2024 May 01.
Article En | MEDLINE | ID: mdl-38307183

Chlorinated polyfluorinated ether sulfonate (F-53B), a substitute of perfluorooctane sulfonic acid (PFOS), has attracted significant attention for its link to hepatotoxicity and enterotoxicity. Nevertheless, the underlying mechanisms of F-53B-induced enterohepatic toxicity remain incompletely understood. This study aimed to explore the role of F-53B exposure on enterohepatic injury based on the gut microbiota, pathological and molecular analysis in mice. Here, we exposed C57BL/6 mice to F-53B (0, 4, 40, and 400 µg/L) for 28 days. Our findings revealed a significant accumulation of F-53B in the liver, followed by small intestines, and feces. In addition, F-53B induced pathological collagen fiber deposition and lipoid degeneration, up-regulated the expression of fatty acid ß-oxidation-related genes (PPARα and PPARγ, etc), while simultaneously down-regulating pro-inflammatory genes (Nlrp3, IL-1ß, and Mcp1) in the liver. Meanwhile, F-53B induced ileal mucosal barrier damage, and an up-regulation of pro-inflammatory genes and mucosal barrier-related genes (Muc1, Muc2, Claudin1, Occludin, Mct1, and ZO-1) in the ileum. Importantly, F-53B distinctly altered gut microbiota compositions by increasing the abundance of Akkermansia and decreasing the abundance of Prevotellaceae_NK3B31_group in the feces. F-53B-altered microbiota compositions were significantly associated with genes related to fatty acid ß-oxidation, inflammation, and mucosal barrier. In summary, our results demonstrate that F-53B is capable of inducing hepatic injury, ileitis, and gut microbiota dysbiosis in mice, and the gut microbiota dysbiosis may play an important role in the F-53B-induced enterohepatic toxicity.


Gastrointestinal Microbiome , Ileitis , Mice , Animals , Dysbiosis , Zebrafish/metabolism , Mice, Inbred C57BL , Liver , Fatty Acids/metabolism
6.
Sci Total Environ ; 921: 171224, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38402960

The emissions and exposure limits for airborne PM0.1 are lacking, with limited scientific data for toxicity. Therefore, we continuously monitored and calculated the number and mass concentrations of airborne PM0.1 in December 2017, January 2018 and March 2018 during the high pollution period in Guangzhou. We collected PM0.1 from the same period and analyzed their chemical components. A549, THP-1 and A549/THP-1 co-cultured cells were selected for exposure to PM0.1, and evaluated for toxicological responses. Our aims are to 1) measure and analyze the number and mass concentrations, and chemical components of PM0.1; 2) evaluate and compare PM0.1 toxicity to different airway cells models at different time points. Guangzhou had the highest mass concentration of PM0.1 in December 2017, while the number concentration was the lowest. Chemical components in PM0.1 vary significantly at different time periods, and the correlation between the chemical composition or source of PM0.1 and the mass and number concentration of PM0.1 was dissimilar. Exposure to PM0.1 disrupted cell membranes, impaired mitochondrial function, promoted the expression of inflammatory mediators, and interfered with DNA replication in the cell cycle. The damage caused by exposure to PM0.1 at different times exhibited variations across different types of cells. PM0.1 in March 2018 stimulated co-cultured cells to secrete more inflammatory mediators, and CMA was significantly related to the expression of them. Our study indicates that it is essential to monitor both the mass and number concentrations of PM0.1 throughout all seasons annually, as conventional toxicological experiments and the internal components of PM0.1 may not effectively reveal the health damages caused by elevated number levels of PM0.1.


Air Pollutants , Air Pollution , Air Pollutants/analysis , Particulate Matter/toxicity , Particulate Matter/analysis , China , Inflammation Mediators , Particle Size , Environmental Monitoring
7.
BMC Pregnancy Childbirth ; 23(1): 597, 2023 Aug 22.
Article En | MEDLINE | ID: mdl-37608260

PURPOSE: Sleep quality is an important indicator of individual quality of life, which not only affects people's mental health but is also closely related to the occurrence of many diseases. Sleep disorders associated with diabetes in pregnancy can greatly endanger the health of both mothers and babies, and their hazards are strongly associated with blood glucose levels. This study explored the quality of sleep and sleep disorders in pregnant women with diabetes. METHODS: From June 2020 to July 2021, a total of 693 patients diagnosed with diabetes during pregnancy in Gansu Provincial Maternal and Child Health Hospital were used as the experiment group, including 626 patients with gestational diabetes mellitus (GDM) and 67 patients with pregestational diabetes mellitus (PGDM). At the same time, 709 women not having diabetes were randomly selected as the control group. To obtain the general situation of the participants, the participants were surveyed using the Pittsburgh Sleep Quality Index (PSQI) and the STOP-BANG (S, Snoring; T, Tiredness; O, Observed apnea; P, high blood Pressure; B, Body mass index > 35 kg/ m2; A, Age > 50 years; N, Neck circumference > 40 cm; G, male Gender) questionnaire. The differences in sleep quality and obstructive sleep apnea-hypopnea syndrome (OSAHS) were analyzed between the experiment group and the control group by using chi-square and t-test, and the clinical features and related factors of sleep disorder were analyzed. RESULTS: Compared with the control group, the age, pre-pregnancy weight, body mass index (BMI), and neck circumference were larger in the experimental group (P < 0.05). The experimental group had higher PSQI scores for sleep quality, time to fall asleep score, sleep duration, sleep efficiency, sleep disorder, and daytime dysfunction than the control group (all P < 0.001). Specific analysis of the clinical features of sleep disorders indicated that the experimental group scored higher than the control group (P < 0.05). The analysis of the types of daytime dysfunction showed that the experiment group scored higher in terms of frequently feeling sleepy and lack of energy to do things than the control group (P < 0.05). Analysis of STOP-BANG scores indicated that the proportion of patients with GDM or PGDM having fatigue, hypertension, BMI > 35 kg/m2, and neck circumference > 40 cm was higher than that in the control group (P < 0.05). According to regression analysis, sleep quality of patients with GDM was significantly impacted by the increases in age (OR: 1.243, CI:1.197-1.290), neck circumference (OR: 1.350, CI: 1.234-1.476), PSQI score (OR: 2.124, CI:1.656-2.724), and sleep efficiency score (OR: 3.083, CI:1.534-6.195), whereas that of patients with PGDM was impacted by age (OR: 1.191, CI:1.086-1.305), neck circumference (OR: 1.981, CI: 1.469-2.673), and PSQI score (OR: 7.835, CI: 2.383-25.761). CONCLUSIONS: Pregnant women with diabetes had poorer sleep quality and a higher risk of developing OSAHS than those without diabetes. There may be some link between sleep quality and the onset of diabetic.


Diabetes, Gestational , Hypertension , Sleep Apnea, Obstructive , Child , Female , Humans , Infant , Male , Middle Aged , Pregnancy , Diabetes, Gestational/epidemiology , Fatigue , Quality of Life , Retrospective Studies , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/epidemiology , Sleep Quality , Case-Control Studies
8.
Bioengineering (Basel) ; 10(7)2023 Jul 01.
Article En | MEDLINE | ID: mdl-37508818

PURPOSE: In the past decade, there has been a rapid increase in the development of automatic cardiac segmentation methods. However, the automatic quality control (QC) of these segmentation methods has received less attention. This study aims to address this gap by developing an automatic pipeline that incorporates DL-based cardiac segmentation and radiomics-based quality control. METHODS: In the DL-based localization and segmentation part, the entire heart was first located and cropped. Then, the cropped images were further utilized for the segmentation of the right ventricle cavity (RVC), myocardium (MYO), and left ventricle cavity (LVC). As for the radiomics-based QC part, a training radiomics dataset was created with segmentation tasks of various quality. This dataset was used for feature extraction, selection, and QC model development. The model performance was then evaluated using both internal and external testing datasets. RESULTS: In the internal testing dataset, the segmentation model demonstrated a great performance with a dice similarity coefficient (DSC) of 0.954 for whole heart segmentations. Images were then appropriately cropped to 160 × 160 pixels. The models also performed well for cardiac substructure segmentations. The DSC values were 0.863, 0.872, and 0.940 for RVC, MYO, and LVC for 2D masks and 0.928, 0.886, and 0.962 for RVC, MYO, and LVC for 3D masks with an attention-UNet. After feature selection with the radiomics dataset, we developed a series of models to predict the automatic segmentation quality and its DSC value for the RVC, MYO, and LVC structures. The mean absolute values for our best prediction models were 0.060, 0.032, and 0.021 for 2D segmentations and 0.027, 0.017, and 0.011 for 3D segmentations, respectively. Additionally, the radiomics-based classification models demonstrated a high negative detection rate of >0.85 in all 2D groups. In the external dataset, models showed similar results. CONCLUSIONS: We developed a pipeline including cardiac substructure segmentation and QC at both the slice (2D) and subject (3D) levels. Our results demonstrate that the radiomics method possesses great potential for the automatic QC of cardiac segmentation.

9.
Environ Pollut ; 334: 122138, 2023 Oct 01.
Article En | MEDLINE | ID: mdl-37453686

Per- and polyfluoroalkyl substances (PFAS) have attracted worldwide attention as one of persistent organic pollutants; however, there is limited knowledge about the exposure concentrations of PFAS-contained ambient particulate matter and the related health risks. This study investigated the abundance and distribution of 32 PFAS in fine particulate matter (PM2.5) collected from 93 primary or secondary schools across the Pearl River Delta region (PRD), China. These chemicals comprise four PFAS categories which includes perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkyl sulfonic acids (PFSAs), perfluoroalkyl acid (PFAA) precursors and PFAS alternatives. In general, concentrations of target PFAS ranged from 11.52 to 419.72 pg/m3 (median: 57.29 pg/m3) across sites. By categories, concentrations of PFSAs (median: 26.05 pg/m3) were the dominant PFAS categories, followed by PFCAs (14.25 pg/m3), PFAS alternatives (2.75 pg/m3) and PFAA precursors (1.10 pg/m3). By individual PFAS, PFOS and PFOA were the dominant PFAS, which average concentration were 24.18 pg/m3 and 6.05 pg/m3, respectively. Seasonal variation showed that the concentrations of PFCAs and PFSAs were higher in winter than in summer, whereas opposite seasonal trends were observed in PFAA precursors and PFAS alternatives. Estimated daily intake (EDI) and hazard quotient (HQ) were used to assess human inhalation-based exposure risks to PFAS. Although the health risks of PFAS via inhalation were insignificant (HQ far less than one), sufficient attention should be levied to ascertain the human exposure risks through inhalation, given that exposure to PFAS through air inhalation is a long term and cumulative process.


Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Humans , Particulate Matter , Environmental Monitoring , Fluorocarbons/analysis , Sulfonic Acids , China , Carboxylic Acids/analysis , Alkanesulfonic Acids/analysis , Water Pollutants, Chemical/analysis
10.
Sci Total Environ ; 895: 165112, 2023 Oct 15.
Article En | MEDLINE | ID: mdl-37364843

Exposure to Fine particulate matter (PM2.5) has been associated with various neurological disorders. However, the underlying mechanisms of PM2.5-induced adverse effects on the brain are still not fully defined. Multi-omics analyses could offer novel insights into the mechanisms of PM2.5-induced brain dysfunction. In this study, a real-ambient PM2.5 exposure system was applied to male C57BL/6 mice for 16 weeks, and lipidomics and transcriptomics analysis were performed in four brain regions. The findings revealed that PM2.5 exposure led to 548, 283, 304, and 174 differentially expressed genes (DEGs), as well as 184, 89, 228, and 49 distinctive lipids in the hippocampus, striatum, cerebellum, and olfactory bulb, respectively. Additionally, in most brain regions, PM2.5-induced DEGs were mainly involved in neuroactive ligand-receptor interaction, cytokine-cytokine receptor interaction, and calcium signaling pathway, while PM2.5-altered lipidomic profile were primarily enriched in retrograde endocannabinoid signaling and biosynthesis of unsaturated fatty acids. Importantly, mRNA-lipid correlation networks revealed that PM2.5-altered lipids and DEGs were obviously enriched in pathways involving in bile acid biosynthesis, De novo fatty acid biosynthesis, and saturated fatty acids beta-oxidation in brain regions. Furthermore, multi-omics analyses revealed that the hippocampus was the most sensitive part to PM2.5 exposure. Specifically, dysregulation of Pla2g1b, Pla2g, Alox12, Alox15, and Gpx4 induced by PM2.5 were closely correlated to the disruption of alpha-linolenic acid, arachidonic acid and linoleic acid metabolism in the hippocampus. In summary, our findings highlight differential lipidomic and transcriptional signatures of various brain regions by real-ambient PM2.5 exposure, which will advance our understanding of potential mechanisms of PM2.5-induecd neurotoxicity.


Air Pollutants , Lipidomics , Mice , Male , Animals , Transcriptome , Mice, Inbred C57BL , Particulate Matter/toxicity , Brain , Lipids , Air Pollutants/toxicity
11.
Diagnostics (Basel) ; 13(9)2023 Apr 25.
Article En | MEDLINE | ID: mdl-37174935

Purpose: This study aimed to assess the value of radiomic features derived from the myocardium (MYO) and papillary muscle (PM) for left ventricular hypertrophy (LVH) detection and hypertrophic cardiomyopathy (HCM) versus hypertensive heart disease (HHD) differentiation. Methods: There were 345 subjects who underwent cardiovascular magnetic resonance (CMR) examinations that were analyzed. After quality control and manual segmentation, the 3D radiomic features were extracted from the MYO and PM. The data were randomly split into training (70%) and testing (30%) datasets. Feature selection was performed on the training dataset. Five machine learning models were evaluated using the MYO, PM, and MYO+PM features in the detection and differentiation tasks. The optimal differentiation model was further evaluated using CMR parameters and combined features. Results: Six features were selected for the MYO, PM, and MYO+PM groups. The support vector machine models performed best in both the detection and differentiation tasks. For LVH detection, the highest area under the curve (AUC) was 0.966 in the MYO group. For HCM vs. HHD differentiation, the best AUC was 0.935 in the MYO+PM group. Comparing the radiomics models to the CMR parameter models for the differentiation tasks, the radiomics models achieved significantly improved the performance (p = 0.002). Conclusions: The radiomics model with the MYO+PM features showed similar performance to the models developed from the MYO features in the detection task, but outperformed the models developed from the MYO or PM features in the differentiation task. In addition, the radiomic models performed better than the CMR parameters' models.

12.
Environ Sci Technol ; 57(21): 7938-7949, 2023 05 30.
Article En | MEDLINE | ID: mdl-37202343

Obesity is prevalent in rural areas of China, and there are inconsistent findings regarding the association between metal(loid) exposure and the risk of obesity. Abdominal obesity (AOB), which reflects visceral fat abnormity, is a crucial factor in studying obesity-related diseases. We conducted a study measuring 20 urinary metal(loid)s, 13 health indicators, and the waist circumference (WC) in 1849 participants from 10 rural areas of China to investigate their relationships. In the single exposure models, we found that urinary chromium (Cr) was significantly associated with the odds of having AOB [adjusted odds ratio (OR) = 1.81 (95% confidence interval (CI): 1.24, 2.60)]. In the mixture exposure models, urinary Cr consistently emerged as the top contributor to AOB, while the overall effect of mixed metal(loid)s was positive toward the odds of having AOB [adjusted OR: 1.33 (95% CI: 1.00, 1.77)], as revealed from the quantile g-computation model. After adjusting for the effects of other metal(loid)s, we found that the elevation of apolipoprotein B and systolic blood pressure significantly mediated the association between urinary Cr and the odds of having AOB by 9.7 and 19.4%, respectively. Our results suggest that exposure to metal(loid)s is a key factor contributing to the prevalence of AOB and WC gain in rural areas of China.


Metalloids , Metals, Heavy , Humans , Obesity, Abdominal/epidemiology , Metals/analysis , Obesity/epidemiology , Chromium , China/epidemiology , Abdominal Fat/chemistry , Risk Assessment , Environmental Monitoring/methods
13.
iScience ; 26(6): 106863, 2023 Jun 16.
Article En | MEDLINE | ID: mdl-37255659

Evidence concerning PM1 exposure, maternal blood pressure (BP), and hypertensive disorders of pregnancy (HDP) is sparse. We evaluated the associations using 105,063 participants from a nationwide cohort. PM1 concentrations were evaluated using generalized additive model. BP was measured according to the American Heart Association recommendations. Generalized linear mixed models were used to assess the PM1-BP/HDP associations. Each 10 µg/m3 higher first-trimester PM1 was significantly associated with 1.696 mmHg and 1.056 mmHg higher first-trimester SBP and DBP, and with 11.4% higher odds for HDP, respectively. The above associations were stronger among older participants (> 35 years) or those educated longer than 17 years or those with higher household annual income (> 400,000 CNY). To conclude, first-trimester PM1 were positively associated with BP/HDP, which may be modified by maternal age, education level, and household annual income. Further research is warranted to provide more information for both health management of HDP and environmental policies enactment.

14.
Environ Int ; 175: 107932, 2023 05.
Article En | MEDLINE | ID: mdl-37116426

Research on the environmental occurrence of long-chain chlorinated paraffins (LCCPs) in ambient fine particulate matter (PM2.5) is still scarce. In the present study, short-chain chlorinated paraffins (SCCPs), medium-chain chlorinated paraffins (MCCPs) and LCCPs were simultaneously quantified and profiled in PM2.5 samples collected from 96 primary or secondary schools in the Pearl River Delta of South China. SCCPs, MCCPs and LCCPs were detected in higher than 90% samples with concentrations in the range of 0.832-109, 1.02-110, and 0.173-17.4 ng/m3, respectively. The dominant congener groups of SCCPs, MCCPs and LCCPs were C13Cl6-8, C14Cl7-8, and C18Cl7-9, respectively. The concentrations of SCCPs and MCCPs were higher in summer than in winter, while an opposite seasonal trend was observed for LCCPs. Principal components analysis showed there were seasonal variations in the congener group patterns with C13Cl6-7 and C14Cl7 more abundant in summer than in winter. Concentrations of CPs also exhibited slight spatial variations. Exposure risk assessment based on different age groups suggested exposure to PM2.5-associated CPs would not pose significant health risk. The present study expands the existing knowledge of CPs contamination in atmospheric environment.


Hydrocarbons, Chlorinated , Paraffin , Paraffin/analysis , Rivers , Hydrocarbons, Chlorinated/analysis , Environmental Monitoring , Particulate Matter/analysis , China
15.
JACC Cardiovasc Imaging ; 16(7): 889-901, 2023 07.
Article En | MEDLINE | ID: mdl-37052557

BACKGROUND: It remains unclear whether adults with metabolically healthy obesity (MHO) have altered myocardial tissue-level characteristics. OBJECTIVES: This study aims to assess the subclinical myocardial tissue-level characteristics of adults with MHO. METHODS: The EARLY-MYO-OBESITY (EARLY Assessment of MYOcardial Tissue Characteristics in OBESITY; NCT05277779) registry was a prospective, 3-center, cardiac imaging study of obese nondiabetic individuals without cardiac symptoms who underwent cardiac magnetic resonance. Myocardial tissue-level characteristics, including extracellular volume fraction (ECV) and native T2 values, were measured as indicators of myocardial fibrosis and edema. Global longitudinal peak systolic strain and early diastolic longitudinal strain rate were assessed by tissue tracking analysis to detect subclinical systolic and diastolic dysfunction. RESULTS: A total of 120 participants were included: MHO (n = 32; mean age, 38 years; 41% men), metabolically healthy controls without obesity (n = 32; mean age: 37 years; 41% men), and metabolically unhealthy obesity (MUHO) (n = 56; mean age: 37 years; 55% men). The MHO group had higher ECV and native T2 values than healthy controls (both P < 0.001); furthermore, the ECV was higher in the MUHO group than in the MHO group (P = 0.002). The prevalence of myocardial fibrosis was 44% (14 of 32) in the MHO group and 71% (40 of 56) in the MUHO group. Although there was no intergroup difference in left ventricular ejection fraction, the MHO group had reduced global longitudinal peak systolic and early diastolic longitudinal strain rates, indicating subclinical systolic and diastolic dysfunction. Multivariate regression analysis identified increased body mass index to be an independent risk factor for myocardial fibrosis (OR: 6.28 [95% CI: 3.17-12.47]; P < 0.001). CONCLUSIONS: This study provides the first evidence of subclinical myocardial tissue-level remodeling in adults with obesity, regardless of metabolic health. Early identification of cardiac impairment may facilitate preventive strategies against heart failure in the MHO population. (EARLY Assessment of MYOcardial Tissue Characteristics in OBESITY [EARLY-MYO-OBESITY]; NCT05277779).


Obesity, Metabolically Benign , Adult , Female , Humans , Male , Body Mass Index , Fibrosis , Obesity/complications , Obesity/diagnostic imaging , Obesity, Metabolically Benign/diagnosis , Predictive Value of Tests , Prospective Studies , Risk Factors , Stroke Volume , Ventricular Function, Left
16.
Kaohsiung J Med Sci ; 39(6): 565-575, 2023 Jun.
Article En | MEDLINE | ID: mdl-36974975

Eicosapentaenoic acid (EPA) has been reported to play an anti-inflammatory and antioxidative stress role in a series of human diseases, including major depressive disorder. However, its exact mechanism is still largely unknown. Mouse BV-2 cells were treated with lipopolysaccharide (LPS) to induce an in vitro inflammatory cell model of depression. Cytotoxic effects were assessed with MTT and lactate dehydrigebase release assays. Cytokine mediators were elevated by western blot and enzyme-linked immunosorbent assays. Autophagy-relators were determined by immunofluorescence and western blot analyses. Interaction relationships among molecules were evaluated utilizing chromatin immunoprecipitation and dual luciferase assays. Methylated miR-29a-3p was detected via methylation-specific polymerase chain reaction. EPA treatment at 60 µM had no cytotoxic effects on BV2 cells and significantly inhibited the LPS-induced inflammatory response and NLRP3 inflammasome but activated autophagy, while all these effects were reversed by the autophagy inhibitor 3-MA. Importantly, miR-29a-3p exhibited a role similar to that of EPA in LPS-treated BV2 cells. Mechanistically, EPA treatment elevated miR-29a-3p by repressing its promoter methylation. MAPK8 was a direct target of miR-29a-3p. Inhibition of miR-29a-3p greatly diminished the regulatory roles mediated by EPA in LPS-treated BV2 cells, while these roles were further impeded after MAPK8 silencing. To conclude, our data demonstrated that EPA treatment alleviated LPS-induced NLRP3 inflammasomes by activating autophagy via regulation of miR-29a-3p/MAPK8 signaling, which further elucidates the potential antidepressant mechanism of EPA.


Depressive Disorder, Major , MicroRNAs , Humans , Mice , Animals , Inflammasomes/genetics , MicroRNAs/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Eicosapentaenoic Acid/pharmacology , Microglia , Lipopolysaccharides/pharmacology , Autophagy/genetics
17.
Front Cardiovasc Med ; 10: 1021937, 2023.
Article En | MEDLINE | ID: mdl-36844736

Background and aim: Cardiotoxicity has become the most common cause of non-cancer death among breast cancer patients. Pyrotinib, a tyrosine kinase inhibitor targeting HER2, has been successfully used to treat breast cancer patients but has also resulted in less well-understood cardiotoxicity. This prospective, controlled, open-label, observational trial was designed to characterize pyrotinib's cardiac impacts in the neoadjuvant setting for patients with HER2-positive early or locally advanced breast cancer. Patients and methods: The EARLY-MYO-BC study will prospectively enroll HER2-positive breast cancer patients who are scheduled to receive four cycles of neoadjuvant therapy with pyrotinib or pertuzumab added to trastuzumab before radical breast cancer surgery. Patients will undergo comprehensive cardiac assessment before and after neoadjuvant therapy, including laboratory measures, electrocardiography, transthoracic echocardiography, cardiopulmonary exercise testing (CPET), and cardiac magnetic resonance (CMR). To test the non-inferiority of pyrotinib plus trastuzumab therapy to pertuzumab plus trastuzumab therapy in terms of cardiac safety, the primary endpoint will be assessed by the relative change in global longitudinal strain from baseline to completion of neoadjuvant therapy by echocardiography. The secondary endpoints include myocardial diffuse fibrosis (by T1-derived extracellular volume), myocardial edema (by T2 mapping), cardiac volumetric assessment by CMR, diastolic function (by left ventricular volume, left atrial volume, E/A, and E/E') by echocardiography, and exercise capacity by CPET. Discussion: This study will comprehensively assess the impacts of pyrotinib on myocardial structural, function, and tissue characteristics, and, furthermore, will determine whether pyrotinib plus trastuzumab is a reasonable dual HER2 blockade regimen with regard to cardiac safety. Results may provide information in selecting an appropriate anti-HER2 treatment for HER2-positive breast cancer. Clinical trial registration: https://clinicaltrials.gov/, identifier NCT04510532.

18.
Sci Total Environ ; 865: 161092, 2023 Mar 20.
Article En | MEDLINE | ID: mdl-36586693

The sources, sizes, components, and toxicological responses of particulate matter (PM) have demonstrated remarkable spatiotemporal variability. However, associations between components, sources, and toxicological effects in different-sized PM remain unclear. The purposes of this study were to 1) determine the sources of PM chemical components, 2) investigate the associations between components and toxicology of PM from Guangzhou high air pollution season. We collected size-segregated PM samples (PM10-2.5, PM2.5-1, PM1-0.2, PM0.2) from December 2017 to March 2018 in Guangzhou. PM sources and components were analyzed. RAW264.7 mouse macrophages were treated with PM samples for 24 h followed by measurements of toxicological responses. The concentrations of PM10-2.5 and PM1-0.2 were relatively high in all samples. Water-soluble ions and PAHs were more abundant in smaller-diameter PM, while metallic elements were more enriched in larger-diameter PM. Traffic exhaust, soil dust, and biomass burning/petrochemical were the most important sources of PAHs, metals and ions, respectively. The main contributions to PM were soil dust, coal combustion, and biomass burning/petrochemical. Exposure to PM10-2.5 induced the most significant reduction of cell mitochondrial activity, oxidative stress and inflammatory response, whereas DNA damage, an increase of Sub G1/G0 population, and impaired cell membrane integrity were most evident with PM1-0.2 exposure. There were moderate or strong correlations between most single chemicals and almost all toxicological endpoints as well as between various toxicological outcomes. Our findings highlight those various size-segregated PM-induced toxicological effects in cells, and identify chemical components and sources of PM that play the key role in adverse intracellular responses. Although fine and ultrafine PM have attracted much attention, the inflammatory damage caused by coarse PM cannot be ignored.


Air Pollutants , Air Pollution , Particulate Matter , Animals , Mice , Air Pollutants/toxicity , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , China , Dust/analysis , Environmental Monitoring , Particle Size , Particulate Matter/toxicity , Particulate Matter/analysis , Seasons
19.
Amyloid ; 30(2): 188-198, 2023 Jun.
Article En | MEDLINE | ID: mdl-36350689

OBJECTIVES: We presented an unreported T96R mutation induced transthyretin cardiac amyloidosis (ATTR). The biochemical and biophysical properties were explored to support its pathogenicity. BACKGROUND: Understanding the biochemical and biophysical nature of genetically mutated transthyretin (TTR) proteins is key to provide precise medical cares for ATTR patients. RESULTS: Genetic testing showed heterozygosity for the T96R pathogenic variant c.347C > G (ATTR p.T116R) after myocardial biopsy confirmed amyloid deposition. Biochemical characterizations revealed slight perturbation of its thermodynamic stability (Cm=3.7 M for T96R, 3.4 M for WT and 2.3 M for L55P (commonly studied TTR mutant)) and kinetic stability (t1/2=39.8 h for T96R, 42 h for WT and 4.4 h in L55P). Crosslinking experiment demonstrated heterozygous subunit exchange between wild-type and TTR T96R protein destabilized the tetramer. Inhibitory effect of tafamidis and diflunisal on TTR T96R fibril formation was slightly less effective compared to WT and L55P. CONCLUSIONS: A novel T96R mutation was identified for TTR protein. Biochemical and biophysical analyses revealed slightly destabilized kinetic stability. T96R mutation destabilized heterozygous protein but not proteolytic degradation, explaining its pathogenicity. Inhibitory effect of small molecule drugs on T96R mutation was different, suggesting personalized treatment may be required.


Amyloid Neuropathies, Familial , Amyloidosis , Humans , Prealbumin/metabolism , Mutation/genetics , Amyloid Neuropathies, Familial/genetics , Amyloid Neuropathies, Familial/drug therapy
20.
Mol Med ; 28(1): 159, 2022 12 20.
Article En | MEDLINE | ID: mdl-36539694

BACKGROUND: This study aims to explore the protective role of ethanol extract from Chimonanthus nitens Oliv. leaf (COE) in hyperlipidemia via the leptin/Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway. METHODS: Male Sprague‒Dawley rats were randomly divided into 6 groups (n = 8): normal-fat diet (NMD), high-fat diet (HFD), HFD treated with simvastatin (SIM, 5 mg/kg/day), and HFD treated with COE (40, 80, 160 mg/kg/day). Lipid parameters, oxidative stress factors, serum leptin, body weight, hepatic wet weight and liver index were measured. Proteins in the leptin/JAK2/STAT3 pathway in liver tissues were determined using western blotting. Additionally, the expression levels of cytochrome P450 family 7 subfamily A member 1 (CYP7A1) and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) were quantified using western blotting and quantitative real-time polymerase chain reaction (qPCR). RESULTS: COE decreased HFD-induced increases in body weight, hepatic wet weight and the liver index. HFD-induced hyperlipidemia and oxidative stress were observed in rat serum and livers. Additionally, COE repressed these two symptoms in rats fed a HFD. Moreover, COE caused CYP7A1 upregulation and HMGCR downregulation in HFD-fed rats. Mechanistically, COE induced the expression of leptin receptor (OB-Rb) and JAK2 and STAT3 phosphorylation in HFD-treated rats. CONCLUSION: COE activates the leptin/JAK2/STAT3 pathway, leading to an improvement in liver function and lipid metabolism and ultimately alleviating hyperlipidemia in rats. Therefore, COE may be a potential hypolipidemic drug for the treatment of hyperlipidemia.


Hyperlipidemias , Leptin , Rats , Male , Animals , Leptin/metabolism , Leptin/pharmacology , Leptin/therapeutic use , Hyperlipidemias/drug therapy , Hyperlipidemias/metabolism , Ethanol/metabolism , Ethanol/pharmacology , Ethanol/therapeutic use , Rats, Sprague-Dawley , STAT3 Transcription Factor/metabolism , Janus Kinase 2/metabolism , Liver/metabolism , Diet, High-Fat/adverse effects , Plant Leaves/metabolism , Body Weight
...