Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(11): e31707, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38845990

RESUMEN

Background: Thyroid cancer (THCA) has become a common malignancy in recent years, with the mortality rate steadily increasing. PANoptosis is a unique kind of programmed cell death (PCD), including pyroptosis, necroptosis, and apoptosis, and is involved in the proliferation and prognosis of numerous cancers. This paper demonstrated the connection between PANoptosis-related genes and THCA based on the analyses of Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases, which have not been evaluated yet. Methods: We identified PANoptosis-related differentially expressed genes (PRDEGs) by multi-analyzing the TCGA-THCA and GEO datasets. To identify the significant PRDEGs, a prognostic model was constructed using least absolute shrinkage and selection operator regression (LASSO). The predictive values of the significant PRDEGs for THCA outcomes were determined using Cox regression analysis and nomograms. Gene enrichment analyses were performed. Finally, immunohistochemistry was carried out using the human protein atlas. Results: A LASSO regression model based on nine PRDEGs was constructed, and the prognostic value of key PRDEGs was explored via risk score. Univariate and multivariate Cox regression were implemented to identify further three significant PRDEGs closely related to distant metastasis, lymph node metastasis, and tumor stage. Then, a nomogram was constructed, which presented high predictive accuracy for 5 years survival of THCA patients. Gene enrichment analyses in THCA were strongly associated with PCD pathways. CASP6 presented significantly differential expression during clinical T stage, N stage, and PFI events (P < 0.05 for all) and demonstrated the highest degree of diagnostic efficacy in PRDEGs (HR: 2.060, 95 % CI: 1.170-3.628, P < 0.05). Immunohistochemistry showed CASP6 was more abundant in THCA tumor tissue. Conclusion: A potential prognostic role for PRDEGs in THCA was identified, providing a new direction for treatment. CASP6 may be a potential therapeutic target and a novel prognostic biomarker for THCA.

2.
J Biol Chem ; 299(12): 105462, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37977223

RESUMEN

The accumulation of abnormal Tau protein is a common feature of various neurodegenerative diseases. Truncated Tau, resulting from cleavage by asparaginyl endopeptidase (AEP, δ-secretase), promotes its own phosphorylation and aggregation. Our study focused on understanding the regulatory mechanisms of AEP activation and its interaction with other proteins. We discovered that c-Src plays a critical role in mediating the activation and polyubiquitination of AEP in response to epidermal growth factor stimulation. In addition, we investigated the involvement of tumor necrosis factor receptor-associated factor 6 (Traf6), an E3 ligase, in the regulation of AEP levels and its interaction with c-Src. Knockdown of Traf6 effectively inhibited c-Src-induced AEP activation. To gain further insights into the molecular mechanisms, we employed mass spectrometry to identify the specific tyrosine residues of Traf6 that are phosphorylated by c-Src. By mutating these phosphorylation sites to phenylalanine, we disrupted Traf6-mediated polyubiquitination and subsequently observed the inactivation of AEP. This finding suggests that the phosphorylation of Traf6 by c-Src is crucial for AEP activation. Pharmacological inhibition of c-Src reduced the phosphorylation of Traf6 and inhibited AEP activation in neurons derived from human-induced pluripotent stem cells. Conditional knockout of Traf6 in neurons prevented c-Src-induced AEP activation and subsequent Tau truncation in vivo. Moreover, phosphorylation of Traf6 is highly correlated with AEP activation, Tau368 and pathological Tau (AT8) in Alzheimer's disease brain. Overall, our study elucidates the role of c-Src in regulating AEP-cleaved Tau through phosphorylating Traf6. Targeting the c-Src-Traf6 pathway may hold potential for the treatment of Alzheimer's disease and other tauopathies.


Asunto(s)
Cisteína Endopeptidasas , Factor 6 Asociado a Receptor de TNF , Ubiquitina-Proteína Ligasas , Familia-src Quinasas , Proteínas tau , Animales , Humanos , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Cisteína Endopeptidasas/metabolismo , Fosforilación , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/metabolismo , Proteínas tau/metabolismo , Factor 6 Asociado a Receptor de TNF/química , Factor 6 Asociado a Receptor de TNF/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Activación Enzimática , Fenilalanina , Ubiquitinación
3.
Front Aging Neurosci ; 15: 1073774, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37091523

RESUMEN

The regional distribution of neurofibrillary tangles of hyperphosphorylated tau aggregates is associated with the progression of Alzheimer's disease (AD). Misfolded proteopathic tau recruits naïve tau and templates its misfolding and aggregation in a prion-like fashion, which is believed to be the molecular basis of propagation of tau pathology. A practical way to assess tau seeding activity is to measure its ability to recruit/bind other tau molecules and to induce tau aggregation. Based on the properties of proteopathic tau, here we report the development of two simple assays to assess tau seeding activity ----- capture assay in vitro and seeded-tau aggregation assay in cultured cells. In the capture assay, proteopathic tau was applied onto a nitrocellulose membrane and the membrane was incubated with cell lysate containing HA-tagged tau151-391 (HA-tau151-391). The captured tau on the membrane was determined by immuno-blots developed with anti-HA. For the seeded-tau aggregation assay, HEK-293FT cells transiently expressing HA-tau151-391 were treated with proteopathic tau in the presence of Lipofectamine 2000 and then lysed with RIPA buffer. RIPA-insoluble fraction containing aggregated tau was obtained by ultracentrifugation and analyzed by immuno-blot developed with anti-HA. To validate these two assays, we assessed the seeding activity of tau in the middle frontal gyrus, middle temporal gyrus and basal forebrain of AD and control brains and found that AD, but not control, brain extracts effectively captured and seeded tau151-391 aggregation. Basal forebrain contained less phospho-tau and tau seeding activity. The levels of captured tau or seeded-tau aggregates were positively correlated to the levels of phospho-tau, Braak stages and tangle sores. These two assays are specific and sensitive and can be carried out in a regular biomedical laboratory setting by using routine biochemical techniques.

4.
J Alzheimers Dis ; 91(4): 1527-1539, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36641675

RESUMEN

BACKGROUND: Neurofibrillary tangle aggregated from anomalous hyperphosphorylated tau is a hallmark of Alzheimer's disease (AD). Trans-active response DNA-binding protein of 43 kDa (TDP-43) enhances the instability and exon (E) 10 inclusion of tau mRNA. Cytoplasmic inclusion of hyperphosphorylated TDP-43 in the neurons constitutes the third most prevalent proteinopathy of AD. Casein kinase 1δ (CK1δ) is elevated in AD brain and phosphorylates TDP-43 in vitro. OBJECTIVE: To determine the roles of CK1δ in phosphorylation, aggregation, and function of TDP-43 in the processing of tau mRNA. METHODS: The interaction and colocalization of TDP-43 and CK1δ were analyzed by co-immunoprecipitation and immunofluorescence staining. TDP-43 phosphorylation by CK1δ was determined in vitro and in cultured cells. RIPA-insoluble TDP-43 aggregates obtained by ultracentrifugation were analyzed by immunoblots. The instability and E10 splicing of tau mRNA were studied by using a reporter of green fluorescence protein tailed with 3'-untranslational region of tau mRNA and a mini-tau gene and analyzed by real-time quantitative PCR and reverse transcriptional PCR. RESULTS: We found that CK1δ interacted and co-localized with TDP-43. TDP-43 was phosphorylated by CK1δ at Ser379, Ser403/404, and Ser409/410 in vitro and in cultured cells, which was mutually enhanced. CK1δ overexpression promoted the aggregation of TDP-43 and suppressed its activity in enhancing the instability and E10 inclusion of tau mRNA. CONCLUSION: CK1δ phosphorylates TDP-43, promotes its aggregation, and inhibits its activity in promoting the instability of tau mRNA and inclusion of tau E10. Elevated CK1δ in AD brain may contribute to TDP-43 and tau pathologies directly or indirectly.


Asunto(s)
Quinasa Idelta de la Caseína , Proteínas de Unión al ADN , Proteínas tau , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Quinasa Idelta de la Caseína/metabolismo , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Fosforilación , ARN Mensajero/metabolismo , Proteínas tau/metabolismo
5.
Acta Neuropathol Commun ; 10(1): 132, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064460

RESUMEN

Propagation of tau pathology via the seeding of naive tau aggregation underlies the progression of Alzheimer's disease (AD) and related tauopathies. Individuals with Down syndrome (DS) develop tau pathology at the fourth decade of life, but tau seeding activity in DS brain has not yet been determined. To measure tau seeding activity, we developed capture assay and seeded-tau aggregation assay with truncated tau151-391. By using brain extracts from AD and related tauopathies, we validated these two methods and found that the brain extracts from AD and related tauopathies, but not from controls and the diseases in which tau was not hyperphosphorylated, captured in vitro and seeded 3R-tau151-391 and 4R-tau151-391 to aggregate in cultured cells similarly. Captured tau151-391 levels were strongly correlated with the seeded-tau151-391 aggregation. Employing these two newly developed assays, we analyzed tau seeding activity in the temporal (TC), frontal (FC), and occipital cortex (OC); corpus callosum (CC); and cerebellar cortex (CBC) of DS and control brains. We found that the extracts of TC, FC, or OC, but not the CC or CBC of DS or the corresponding brain regions of control cases, captured tau151-391. Levels of the captured tau151-391 by brain extracts were positively correlated with their levels of phosphorylated tau. Extracts of cerebral cortex and CC, but not CBC of DS with a similar tau level, induced more tau151-391 aggregation than did the corresponding samples from the control cases. Thus, higher tau seeding activity associated with tau hyperphosphorylation was found in the TC, FC, and OC of DS compared with the corresponding control regions as well as with the CBC and CC of DS. Of note, these two assays are sensitive, specific, and repeatable at a low cost and provide a platform for measuring tau seeding activity and for drug screening that targets tau propagation.


Asunto(s)
Enfermedad de Alzheimer , Síndrome de Down , Tauopatías , Enfermedad de Alzheimer/patología , Encéfalo/patología , Síndrome de Down/patología , Humanos , Tauopatías/patología , Proteínas tau/metabolismo
6.
J Hazard Mater ; 434: 128782, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35428539

RESUMEN

The effective detection of hazardous gases has become extremely necessary for the ecological environment and public health. Interfacial engineering plays an indispensable role in the development of innovative materials with exceptional properties, thus triggering a new revolution in the realization of high-performance gas sensing. Herein, the rational designed Ag2S/SnS2 heterostructures were synthesized via a facile in-situ cation-exchange method. The coshared S atoms derived from in-situ interfacial engineering enable intimate atomic-level contact and strong electron coupling between SnS2 and Ag2S, which efficiently assist interfacial charge redistribution and transport as confirmed theoretically and experimentally. Benefiting from the high-quality interface of the heterostructures, the resultant Ag2S/SnS2 sensor delivered an ultrahigh response (286%) together with short response/recovery time (17 s/38 s) to 1 ppm NO2. The sensor also demonstrated superior sensing selectivity and reliable repeatability at room-temperature. Such excellent sensing performance could be synergistically ascribed to the junction effect and interfacial engineering of Ag2S/SnS2 heterostructures, which not only modulates the electronic properties of SnS2 but also provides abundant adsorption sites for gas sensing. This study offers guidance for engineering heterostructures with high-quality interface, which might stimulate the exploitation of other novel materials and widen their potential applications.

7.
Brain Res Bull ; 178: 133-143, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34808323

RESUMEN

Folic acid (FA) supplementation in early pregnancy is recommended to protect against birth defects. But excess FA has exhibited neurodevelopmental toxicity. We previously reported that the mice treated with 2.5-fold the dietary requirement of FA one week before mating and throughout pregnancy and lactation displayed abnormal behaviors in the offspring. Here we found the levels of non-phosphorylated ß-catenin (active) were increased in the brains of weaning and adult FA-exposed offspring. Meanwhile, demethylation of protein phosphatase 2 A catalytic subunit (PP2Ac), which suppresses its enzyme activity in regulatory subunit dependent manner, was significantly inhibited. Among the upstream regulators of ß-catenin, PI3K/Akt/GSK-3ß but not Wnt signaling was stimulated in FA-exposed brains only at weaning. In mouse neuroblastoma N2a cells, knockdown of PP2Ac or leucine carboxyl methyltransferase-1 (LCMT-1), or overexpression of PP2Ac methylation-deficient mutant decreased ß-catenin dephosphorylation. These results suggest that excess FA may activate ß-catenin via suppressing PP2Ac demethylation, providing a novel mechanism for the influence of FA on neurodevelopment.


Asunto(s)
Encéfalo/efectos de los fármacos , Suplementos Dietéticos , Ácido Fólico/farmacología , Complejo Vitamínico B/farmacología , beta Catenina/efectos de los fármacos , Factores de Edad , Animales , Femenino , Ácido Fólico/administración & dosificación , Masculino , Ratones , Embarazo , Factores Sexuales , Complejo Vitamínico B/administración & dosificación , Destete
8.
ACS Appl Mater Interfaces ; 13(45): 54152-54161, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34734688

RESUMEN

Tin disulfide (SnS2) has been extensively researched as a promising sensing material due to its large electronegativity, suitable band gap, earth abundance, and nontoxicity. However, the poor conductivity and slow response/recovery speed at room temperature greatly hinder its application in high-performance practical gas sensors. Herein, to promote the study of SnS2-based gas sensors, a hierarchical SnS2/TiO2 heterostructure was synthesized and used as a sensing material to detect NO2 with the help of light illumination. Through the synergistic effect of the SnS2/TiO2 heterostructure and 525 nm light activation, the NO2 sensor based on the SnS2/TiO2 heterostructure exhibited a high response factor of 526% toward 1 ppm NO2 and a short response/recovery time of 43/102 s at room temperature due to the enhanced charge transfer and increased adsorption sites, which was superior to the vast majority of other NO2 sensors. An obvious decrease in the surface-adsorbed oxygen content based on the X-ray photoelectron spectroscopy measurement further confirmed that light illumination was helpful to clear the surface of SnS2/TiO2 and thus increased active sites for NO2 sensing. In addition, a flexible SnS2/TiO2 sensor was also fabricated to confirm its potential application in portable and wearable devices.

9.
J Neurochem ; 158(3): 766-778, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34107054

RESUMEN

Trans-active response DNA-binding protein of 43 kDa (TDP-43) promotes tau mRNA instability and tau exon 10 inclusion. Aggregation of phosphorylated TDP-43 is associated with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration. Casein kinase 1ε (CK1ε) phosphorylates TDP-43 at multiple sites, enhances its cytoplasmic aggregation, and modulates its function in tau mRNA processing. To determine roles of TDP-43 site-specific phosphorylation in its localization, aggregation, and function in tau mRNA processing, TDP-43 was mutated to alanine or aspartic acid at Ser379, Ser403/404, or Ser409/410 to block or mimic phosphorylation. Site-specific phosphorylation of TDP-43 and its mutants by CK1ε was studied in vitro and in cultured cells. Cytoplasmic and nuclear TDP-43 and phospho-TDP-43 were analyzed by western blots. Aggregation of TDP-43 was assessed by immunostaining and level of radioimmunoprecipitation assay buffer-insoluble TDP-43. Green florescent protein tailed with tau 3'-untranslated region and mini-tau gene pCI/SI9-LI10 were used to study tau mRNA stability and alternative splicing of tau exon 10. We found that phospho-blocking mutations of TDP-43 at Ser379, Ser403/404, or Ser409/410 were not effectively phosphorylated by CK1ε. Compared with TDP-43, higher level of phosphorylated TDP-43 in the cytoplasm was observed. Phospho-mimicking mutations at these sites enhanced cytoplasmic aggregation of TDP-43. Green florescent protein expression was not inhibited by phospho-blocking mutants of TDP-43, but tau exon 10 inclusion was further enhanced by phospho-blocking mutations at Ser379 and Ser403/404. Phosphorylation of TDP-43 at Ser379, Ser403/404, or Ser409/410 primes its phosphorylation by CK1ε, promotes TDP-43 cytoplasmic aggregation, and modulates its function in tau mRNA processing in site-specific manner.


Asunto(s)
Empalme Alternativo/fisiología , Citoplasma/metabolismo , Proteínas de Unión al ADN/metabolismo , Exones/fisiología , Estabilidad del ARN/fisiología , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Agregación Celular/fisiología , Proteínas de Unión al ADN/genética , Femenino , Lóbulo Frontal/metabolismo , Células HEK293 , Células HeLa , Humanos , Masculino , Ratones , Fosforilación/fisiología , Proteínas tau/genética
10.
Front Mol Neurosci ; 14: 631833, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054426

RESUMEN

Accumulation of intracellular neurofibrillary tangles (NFTs), which are constituted of abnormally phosphorylated tau, is one of the neuropathological hallmarks of Alzheimer's disease (AD). The oligomeric aggregates of tau in AD brain (AD O-tau) are believed to trigger NFT spreading by seeding normal tau aggregation as toxic seeds, in a prion-like fashion. Here, we revealed the features of AD O-tau by Western blots using antibodies against various epitopes and determined the effect of dephosphorylation on the seeding activity of AD O-tau by capture and seeded aggregation assays. We found that N-terminal truncated and C-terminalhyperphosphorylated tau species were enriched in AD O-tau. Dephosphorylation of AD O-tau by alkaline phosphatasediminished its activity in capturing tau in vitro and ininducing insoluble aggregates in cultured cells. Our resultssuggested that dephosphorylation passivated the seeding activity ofAD O-tau. Inhibition of phosphorylation may be a potentstrategy to prevent the spreading of tau patho3logy.

11.
Acta Neuropathol Commun ; 9(1): 28, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33597014

RESUMEN

Neurofibrillary tangles (NFTs) made of abnormally hyperphosphorylated tau are a hallmark of Alzheimer's disease (AD) and related tauopathies. Regional distribution of NFTs is associated with the progression of the disease and has been proposed to be a result of prion-like propagation of misfolded tau. Tau in AD brain is heterogenous and presents in various forms. In the present study, we prepared different tau fractions by sedimentation combined with sarkosyl solubility from AD brains and analyzed their biochemical and pathological properties. We found that tau in oligomeric fraction (O-tau), sarkosyl-insoluble fractions 1 and 2 (SI1-tau and SI2-tau) and monomeric heat-stable fraction (HS-tau) showed differences in truncation, hyperphosphorylation, and resistance to proteinase K. O-tau, SI1-tau, and SI2-tau, but not HS-tau, were hyperphosphorylated at multiple sites and contained SDS- and ß-mercaptoethanol-resistant high molecular weight aggregates, which lacked the N-terminal portion of tau. O-tau and SI2-tau displayed more truncation and less hyperphosphorylation than SI1-tau. Resistance to proteinase K was increased from O-tau to SI1-tau to SI2-tau. O-tau and SI1-tau, but not SI2-tau or HS-tau, captured tau from cell lysates and seeded tau aggregation in cultured cells. Heat treatment could not kill the prion-like activity of O-tau to capture normal tau. Hippocampal injection of O-tau into 18-month-old FVB mice induced significant tau aggregation in both ipsilateral and contralateral hippocampi, but SI1-tau only induced tau pathology in the ipsilateral hippocampus, and SI2-tau and HS-tau failed to induce any detectable tau aggregation. These findings suggest that O-tau and SI1-tau have prion-like activities and may serve as seeds to recruit tau and template tau to aggregate, resulting in the propagation of tau pathology. Heterogeneity of tau pathology within AD brain results in different fractions with different biological and prion-like properties, which may pose a major challenge in targeting tau for development of effective therapeutic treatments.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Priones/metabolismo , Proteínas tau/aislamiento & purificación , Proteínas tau/metabolismo , Enfermedad de Alzheimer/patología , Animales , Encéfalo/patología , Técnica del Anticuerpo Fluorescente , Células HEK293 , Células HeLa , Hipocampo/patología , Humanos , Ratones , Ovillos Neurofibrilares/patología , Fosforilación
12.
J Alzheimers Dis ; 79(4): 1647-1659, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33459649

RESUMEN

BACKGROUND: Neurofibrillary pathology of abnormally hyperphosphorylated tau spreads along neuroanatomical connections, underlying the progression of Alzheimer's disease (AD). The propagation of tau pathology to axonally connected brain regions inevitably involves trafficking of seeding-competent tau within the axonal compartment of the neuron. OBJECTIVE: To determine the seeding activity of tau in cerebral gray and white matters of AD. METHODS: Levels of total tau, hyperphosphorylation of tau, and SDS- and ß-mercaptoethanol-resistant high molecular weight tau (HMW-tau) in crude extracts from gray and white matters of AD frontal lobes were analyzed by immuno-blots. Tau seeding activity was quantitatively assessed by measuring RIPA buffer-insoluble tau in HEK-293FT/tau151-391 cells treated with brain extracts. RESULTS: We found a comparable level of soluble tau in gray matter versus white matter of control brains, but a higher level of soluble tau in gray matter than white matter of AD brains. In AD brains, tau is hyperphosphorylated in both gray and white matters, with a higher level in the former. The extracts of both gray and white matters of AD brains seeded tau aggregation in HEK-293FT/tau151-391 cells but the white matter showed less potency. Seeding activity of tau in brain extracts was positively correlated with the levels of tau hyperphosphorylation and HMW-tau. RIPA-insoluble tau, but not RIPA-soluble tau, was hyperphosphorylated tau at multiple sites. CONCLUSION: Both gray and white matters of AD brain contain seeding-competent tau that can template aggregation of hyperphosphorylated tau, but the seeding potency is markedly higher in gray matter than in white matter.


Asunto(s)
Enfermedad de Alzheimer/patología , Encéfalo/patología , Sustancia Gris/patología , Sustancia Blanca/patología , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Progresión de la Enfermedad , Sustancia Gris/metabolismo , Humanos , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/patología , Sustancia Blanca/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...