Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Tissue Eng Part C Methods ; 19(2): 166-80, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22834957

RESUMEN

Neural progenitor cells (NPCs) derived from human induced pluripotent stem cells (hiPSCs) can be differentiated to neural cells that model neurodegenerative diseases and be used in the screening of potential drugs to ameliorate the disease phenotype. Traditionally, NPCs are produced in 2D cultures, in low yields, using a laborious process that includes generation of embryonic bodies, plating, and colony selections. To simplify the process and generate large numbers of hiPSC-derived NPCs, we introduce a microcarrier (MC) system for the expansion of a hiPSC line and its subsequent differentiation to NPC, using iPS (IMR90) as a model cell line. In the expansion stage, a process of cell propagation in serum-free MC culture was developed first in static culture, which is then scaled up in stirred spinner flasks. A 7.7-fold expansion of iPS (IMR90) and cell yield of 1.3×106 cells/mL in 7 days of static MC culture were achieved. These cells maintained expression of OCT 3/4 and TRA-1-60 and possessed a normal karyotype over 10 passages. A higher cell yield of 6.1×106 cells/mL and 20-fold hiPSC expansion were attained using stirred spinner flasks (seeded from MC static cultures) and changing the medium-exchange regimen from once to twice a day. In the differentiation stage, NPCs were generated with 78%-85% efficiency from hiPSCs using a simple serum-free differentiation protocol. Finally, the integrated process of cell expansion and differentiation of hiPSCs into NPCs using an MC in spinner flasks yielded 333 NPCs per seeded hiPSC as compared to 53 in the classical 2D tissue culture protocol. Similar results were obtained with the HES-3 human embryonic stem cell line. These NPCs were further differentiated into ßIII-tubulin⁺ neurons, GFAP⁺ astrocytes, and O4⁺ oligodendrocytes, showing that cells maintained their multilineage differentiation potential.


Asunto(s)
Diferenciación Celular , División Celular , Neuronas/citología , Células Madre Pluripotentes/citología , Células Cultivadas , Medio de Cultivo Libre de Suero , Citometría de Flujo , Humanos , Inmunohistoquímica , Cariotipificación , Reacción en Cadena en Tiempo Real de la Polimerasa
2.
Stem Cells Dev ; 21(5): 729-41, 2012 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-21649559

RESUMEN

Molecular and cellular signaling pathways are involved in the process of neural differentiation from human embryonic stem cells (hESC) to terminally differentiated neurons. The Sonic hedgehog (SHH) morphogen is required to direct the differentiation of hESC to several neural subtypes, for example, dopaminergic (DA) or motor neurons. However, the roles of SHH signaling and the pathway target genes that regulate the diversity of cellular responses arising from SHH activation during neurogenesis of hESC have yet to be elucidated. In this study, we report that overexpression of SHH in hESC promotes the derivation of neuroprogenitors (NP), increases proliferation of NP, and subsequently increases the yield of DA neurons. Next, gene expression changes resulting from the overexpression of SHH in hESC-derived NP were examined by genome-wide transcriptional profiling. Categorizing the differentially expressed genes according to the Gene Ontology biological processes showed that they are involved in numerous cellular processes, including neural development, NP proliferation, and neural specification. In silico GLI-binding sites analysis of the differentially expressed genes also identified a set of putative novel direct target genes of SHH in hESC-derived NP, which are involved in nervous system development. Electrophoretic mobility shift assays and promoter-luciferase assays confirmed that GLI1 binds to the promoter region and activates transcription of HEY2, a NOTCH signaling target gene. Taken together, our data provide evidence for the first time that there is cross-talk between the NOTCH and SHH signaling pathways in hESC-derived NP and also provide significant new insights into transcriptional targets in SHH-mediated neural differentiation of hESC.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Células Madre Embrionarias/metabolismo , Perfilación de la Expresión Génica , Proteínas Hedgehog/genética , Células-Madre Neurales/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Western Blotting , Diferenciación Celular/genética , Línea Celular , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/fisiología , Células Madre Embrionarias/citología , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Técnica del Anticuerpo Fluorescente , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Proteínas de Filamentos Intermediarios/genética , Proteínas de Filamentos Intermediarios/metabolismo , Potenciales de la Membrana , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Nestina , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Técnicas de Placa-Clamp , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína con Dedos de Zinc GLI1
3.
Stem Cell Res ; 4(1): 38-49, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19836325

RESUMEN

Human embryonic stem cells (hESC) are characterized by their ability to self-renew and differentiate into all cell types of the body, making them a valuable resource for regenerative medicine. Yet, the molecular mechanisms by which hESC retain their capacity for self-renewal and differentiation remain unclear. The Hedgehog signaling pathway plays a pivotal role in organogenesis and differentiation during development, and is also involved in the proliferation and cell-fate specification of neural stem cells and neural crest stem cells. As there has been no detailed study of the Sonic hedgehog (SHH) signaling pathway in hESC, this study examines the expression and functional role of SHH during hESC self-renewal and differentiation. Here, we show the gene and protein expression of key components of the SHH signaling pathway in hESC and differentiated embryoid bodies. Despite the presence of functioning pathway components, SHH plays a minimal role in maintaining pluripotency and regulating proliferation of undifferentiated hESC. However, during differentiation with retinoic acid, a GLI-responsive luciferase assay and target genes PTCH1 and GLI1 expression reveal that the SHH signaling pathway is highly activated. Besides, addition of exogenous SHH to hESC differentiated as embryoid bodies increases the expression of neuroectodermal markers Nestin, SOX1, MAP2, MSI1, and MSX1, suggesting that SHH signaling is important during hESC differentiation toward the neuroectodermal lineage. Our findings provide a new insight in understanding the SHH signaling in hESC and the further development of hESC differentiation for regenerative medicine.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/metabolismo , Proteínas Hedgehog/metabolismo , Células Madre Pluripotentes/metabolismo , Transducción de Señal , Animales , Línea Celular , Linaje de la Célula , Proliferación Celular , Células Madre Embrionarias/citología , Regulación de la Expresión Génica , Proteínas Hedgehog/genética , Humanos , Ratones , Células Madre Pluripotentes/citología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína con Dedos de Zinc GLI1
4.
Stem Cells Dev ; 17(4): 825-36, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18788934

RESUMEN

The utilization of human embryonic stem cells (hESC) in regenerative medicine largely depends on the development of technologies that will allow efficient genetic manipulation of the cells in vitro. Although a few studies have described the transfection of hESC for generation of reporter lines stably expressing specific transgenes driven by different promoters, the optimal choice of promoter system for driving transgene in hESC has yet to be elucidated. We show for the first time that Chinese hamster elongation factor-1 alpha (CHEF1) promoter robustly drove reporter gene expression higher than the human elongation factor 1 alpha (hEF1 alpha), other constitutive Chinese hamster promoters, human cytomegalovirus (CMV) immediate early enhancer/promoter and SV40 promoters in hESC by quantitative analysis. We also successfully generated stably transfected hESC lines using this CHEF1 promoter system and demonstrated that they continued to express enhanced green fluorescent protein (EGFP) during prolonged undifferentiated proliferation, in differentiated embryoid bodies (EBs), and in teratomas without transgene silencing. By immunofluorescence staining and D ow cytometry analysis, the pluripotent markers, OCT-4, SSEA-4, and TRA-1-60, continued to be expressed in undifferentiated CHEF1-EGFP expressing hESC lines. When the stably transfected hESC were directed to differentiate into neural precursors in vitro, high-level EGFP expression was maintained and co-expression of neural markers, Nestin, and beta-tubulin III was observed. The morphology, karyotype, and telomerase activity of CHEF1-EGFP expressing hESC were normal after >50 continuous passages, and the cells retained the ability to differentiate into derivatives of the three germ layers in vitro as confirmed by RT-PCR analysis and immunocytochemical staining and in vivo teratoma formation. Therefore, stable CHEF1-EGFP hESC lines retained the capability for self-renewal and pluripotency. The novel CHEF1 promoter system described here enables high-level transgene expression in the stably transfected hESC. It may have signi, cant implication for uses in bioprocess development and future development of gene-modified hESC in tissue regeneration and transplantation applications.


Asunto(s)
Células Madre Embrionarias/metabolismo , Factor 1 de Elongación Peptídica/genética , Células Madre Pluripotentes/metabolismo , Regiones Promotoras Genéticas/genética , Transgenes/fisiología , Animales , Antígenos de Diferenciación/biosíntesis , Línea Celular , Proliferación Celular , Cricetinae , Cricetulus , Citomegalovirus/genética , Células Madre Embrionarias/citología , Humanos , Células Madre Pluripotentes/citología , Regeneración/genética , Virus 40 de los Simios/genética , Trasplante de Células Madre , Transfección/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA