Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Asian J ; : e202400296, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38889347

RESUMEN

Formic acid (HCOOH) is a highly energy-efficient product of electrochemical CO2 reduction reaction (CO2RR). Bismuth-based catalysts have shown promise in the conversion of CO2 to formic acid, but there is still a great need for further improvement in selectivity and activity. Herein, we report the preparation of Bi nanosheets decorated by cerium oxide nanoparticles (CeOx) with high Ce3+/Ce4+ ratio and rich oxygen vacancies. The CeOx nanoparticles affect on the electronic structures of bismuth, enhance the CO2 adsorption, and thus promote the CO2RR properties of Bi nanosheets. Compared with elemental Bi nanosheets, the hetero-structured CeOx/Bi nanosheets exhibit much higher activity over a wide potential window, showing a current density of 16.1 mA cm-2 with a  Faradaic efficiency of 91.1% at -0.9 V vs. reversible hydrogen electrode.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38899963

RESUMEN

OBJECTIVE: To investigate the relationship between maternal blood pressure (BP) and neonatal cord blood telomere length (TL) during pregnancy, and to clarify the sensitive period. METHODS: We conducted a prospective cohort study with 621 mother-newborn pairs from the Guangxi Zhuang Birth Cohort (GZBC) in China. Multiple informant models, restricted cubic spline regression (RCS) models, and quantile regression models were conducted to analyze the correlation between maternal BP and neonatal TL. RESULTS: Maternal diastolic blood pressure (DBP) was inversely related to neonatal cord blood TL in the second trimester (P = 0.015) and the third trimester (P = 0.011). There was a male-specific relationship between maternal BP and neonatal TL. A 1 mmHg increment in maternal systolic blood pressure (SBP) and DBP during the second trimester was related with 0.42% (95% CI: -0.80%, -0.04%) and 0.61% (95% CI: -1.13%, -0.09%) shorter TL in male newborns, respectively. Per unit increase of maternal DBP during the third trimester was related with 0.54% (95% CI: -1.03%, -0.05%) shorter TL in male newborns. Pregnant women with hypertensive disease of pregnancy (HDP) had male offspring with shorter TL (P = 0.003). However, no significant relationships were found in female newborns (P = 0.570). CONCLUSION: Maternal BP during pregnancy is inversely correlated with male neonatal TL and the second and third trimesters are sensitive windows.

3.
Genomics ; 115(6): 110733, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37866659

RESUMEN

BACKGROUND: Big data mining and experiments are widely used to mine new prognostic markers. METHODS: Candidate genes were identified from CROEMINE and FerrDb. Kaplan-Meier survival and Cox regression analysis were applied to assess the association of genes with Overall survival time (OS) and Disease-free survival time (DFS) in two HCC cohorts. Real-time quantitative polymerase chain reaction (RT-qPCR) and Immunohistochemistry were performed in HCC samples. RESULTS: 21 and 15 genes that can predict OS and DFS, which had not been reported before, were identified from 719 genes, respectively. Survival analysis showed elevated mRNA expression of GLMP, SLC38A6, and WDR76 were associated with poor prognosis, and three genes combination signature was an independent prognostic factor in HCC. RT-qPCR and Immunohistochemistry confirmed the results. CONCLUSIONS: We established a novel computational process, which identified the expression levels of GLMP, SLC38A6, and WDR76 as potential ferroptosis-related biomarkers indicating the prognosis of HCC.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Ferroptosis/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Estimación de Kaplan-Meier , Pronóstico , Proteínas de Unión al ADN , Proteínas de Ciclo Celular
4.
iScience ; 26(10): 107818, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37752955

RESUMEN

Many circular RNAs (circRNAs) have been identified to be associated with hepatocellular carcinoma (HCC) progression. We aim to explore the diagnostic potential, functions, and mechanism of circELMOD3 in HCC. Differentially expressed circRNAs in HCC and its paired adjacent tissues were identified by RNA sequencing. circELMOD3 was downregulated in HCC tissues and was related to clinicopathological characteristics of HCC patients. Additionally, plasma circELMOD3 was shown to be a highly sensitive and non-invasive biomarker to distinguish HCC from healthy controls. Functional assays showed that circELMOD3 inhibited proliferation and induced apoptosis of HCC cells both in vitro and in vivo. Mechanistically, RNA antisense purification (RAP) and luciferase reporter assays verified that circELMOD3 functioned as a sponge for miR-6864-5p leading to increased expression of its target gene TRIM13. Interestingly, RNA stability test demonstrated that circELMOD3 overexpression led to enhanced stability of its directly bound TRIM13 mRNA, which in turn co-activated the p53 signaling pathway.

5.
Cancer Med ; 12(11): 12553-12568, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37039160

RESUMEN

BACKGROUND: Many studies have shown that circular RNAs (circRNAs) are abnormally expressed in various tumor tissues and served as a key regulator in the occurrence and development of cancer. However, in hepatocellular carcinoma (HCC), the molecular mechanism of circRNAs in body fluids remains to be further explored. METHODS: The expression levels of genes and proteins were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting, respectively. Cell counting Kit-8 (CCK-8), 5-Ethynyl-2'-deoxyuridine (EdU), wound healing assay, Transwell assays, flow cytometry, and tumor formation models in nude mice were conducted to investigate the effects of circFAM114A2 on HCC cells both in vitro and in vivo. RNA antisense purification (RAP), dual luciferase reporter assays and rescue assays were carried out to verify the interaction between circFAM114A2, miR-630 and HHIP. RESULTS: CircFAM114A2 was significantly downregulated in HCC tissues and was associated with microvascular invasion and lymph node metastasis of HCC patients. We also observed that circFAM114A2 was lowly expressed in HCC plasma, which may serve as an effective biomarker to screen HCC patients from healthy controls (area under curve (AUC)=0.922). In vitro, circFAM114A2 overexpression significantly blunted HCC cell proliferation, migration, invasion, and promoted apoptosis, whereas circFAM114A2 silencing posed opposite effects. In vivo, circFAM114A2 overexpression inhibited the growth of HCC cells. Mechanistically, circFAM114A2 could increase the expression of the tumor suppressor HHIP via acting as a sponge for miR-630. CONCLUSIONS: CircFAM114A2 exerts a tumor suppressor role in HCC through miR-630/HHIP axis, and may be served as a potential diagnostic and therapeutic biomarker for HCC patients.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Animales , Ratones , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , MicroARNs/genética , MicroARNs/metabolismo , Ratones Desnudos , ARN Circular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica
6.
Chem Asian J ; 18(9): e202300110, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36935350

RESUMEN

CO2 reduction reactions (CO2 RR) powered by renewable electricity can directly convert CO2 to hydrocarbons and fix the sustainable but intermittent energy (e. g., sunlight, wind, etc.) in stable and portable chemical fuels. Advanced catalysts boosting CO2 RR with high activity, selectivity, and durability at low overpotentials are of great importance but still elusive. Here, we report that the ultrathin Pd-Ag dendritic nanoplates (PdAg DNPs) exhibited boosted activity, selectivity, and stability for producing formate from CO2 at a very low overpotential in aqueous solutions under ambient conditions. As a result, the PdAg DNPs exhibited a Faradaic efficiency (FE) for formate of 91% and a cathodic energy efficiency (EE) of ∼90% at the potential of -0.2 V versus reversible hydrogen electrode (vs. RHE), showing significantly enhanced durability as compared with pure Pd catalysts. Our strategy represents a rational catalyst design by engineering the surface geometrical and electronic structures of metal nanocrystals and may find more applicability in future electrocatalysis.

7.
ChemSusChem ; 15(10): e202200211, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35266642

RESUMEN

The electrocatalytic properties of metal nanoparticles (NPs) strongly depend on their compositions and structures. Rational design of alloys and/or heterostructures provides additional approaches to modifying their surface geometric and electronic structures for optimized electrocatalytic performance. Here, a solution synthesis of freestanding intermetallic Au2 Bi NPs, the heterostructures of Au2 Bi/Bi hetero-NPs, and their promoted electrocatalytic CO2 reduction reaction (CO2 RR) performances were reported. It was revealed that the formation and in-situ conversion of heterogeneous seeds (e. g., Au) were of vital importance for the formation of intermetallic Au2 Bi and Au2 Bi/Bi hetero-NPs. It was also found that the Au components would act as the structure promoter moderating the binding strength for key intermediates on Bi surfaces. The alloying of Bi with Au and the formation of heterogeneous Au2 Bi/Bi interfaces would create more surface active sites with modulated electronic structures and stronger adsorption strengths for key intermediates, promoting the CO2 -to-HCOOH conversion with high activity and selectivity. This work presents a novel route for preparing intermetallic nanomaterials with modulated surface geometric/electric structures and promoting their electrocatalytic activities with alloying effects and interfacial effects. Such strategy may find wide application in catalyst design and synthesis for more electrocatalytic reactions.

8.
ACS Appl Mater Interfaces ; 14(8): 10648-10655, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35167272

RESUMEN

Electrochemical CO2 reduction reaction (CO2RR) yielding value-added chemicals provides a sustainable approach for renewable energy storage and conversion. Bismuth-based catalysts prove to be promising candidates for converting CO2 and water into formate but still suffer from poor selectivity and activity and/or sluggish kinetics. Here, we report that ultrathin porous Bi nanosheets (Bi-PNS) can be prepared through a controlled solvothermal protocol. Compared with smooth Bi nanoparticles (Bi-NPs), the ultrathin, rough, and porous Bi-PNS provide more active sites with higher intrinsic reactivities for CO2RR. Moreover, such high activity further increases the local pH in the vicinity of the catalyst surfaces during electrolysis and thus suppresses the competing hydrogen evolution reaction. As a result, the Bi-PNS exhibit significantly boosted CO2RR properties, showing a Faradaic efficiency of 95% with an effective current density of 45 mA cm-2 for formate evolution at the potential of -1.0 V versus reversible hydrogen electrode.

9.
Nanoscale ; 13(47): 20091-20097, 2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34846444

RESUMEN

The catalytic performances of metal nanoparticles can be widely tuned and promoted by the metal-support interactions. Here, we report that the morphologies and electrocatalytic CO2 reduction reaction (CO2RR) properties of bismuth nanoparticles (BiNPs) can be rationally modulated by their interactions with carbon black (CB) supports by controlling the degree of surface oxidation. Appropriately oxidized CB supports can provide sufficient oxygen-containing groups for anchoring BiNPs with tunable sizes and surface areas, desirable key intermediate adsorption abilities, appropriate surface wettability, and adequate electron transfer abilities. As a result, the optimized Bi/CB catalysts exhibited a promoted CO2RR performance with a Faradaic efficiency of 94% and a current density of 16.7 mA cm-2 for HCOO- at -0.9 V versus a reversible hydrogen electrode. Our results demonstrate the significance of regulating the interactions between supports and metal nanoparticles for both synthesis of the catalyst and electrolysis applications, which may find broader applicability in more electrocatalyst designs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...