Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 40
1.
J Med Genet ; 58(5): 314-325, 2021 05.
Article En | MEDLINE | ID: mdl-32518176

BACKGROUND: The nucleotide binding protein-like (NUBPL) gene was first reported as a cause of mitochondrial complex I deficiency (MIM 613621, 618242) in 2010. To date, only eight patients have been reported with this mitochondrial disorder. Five other patients were recently reported to have NUBPL disease but their clinical picture was different from the first eight patients. Here, we report clinical and genetic findings in five additional patients (four families). METHODS: Whole exome sequencing was used to identify patients with compound heterozygous NUBPL variants. Functional studies included RNA-Seq transcript analyses, missense variant biochemical analyses in a yeast model (Yarrowia lipolytica) and mitochondrial respiration experiments on patient fibroblasts. RESULTS: The previously reported c.815-27T>C branch-site mutation was found in all four families. In prior patients, c.166G>A [p.G56R] was always found in cis with c.815-27T>C, but only two of four families had both variants. The second variant found in trans with c.815-27T>C in each family was: c.311T>C [p.L104P] in three patients, c.693+1G>A in one patient and c.545T>C [p.V182A] in one patient. Complex I function in the yeast model was impacted by p.L104P but not p.V182A. Clinical features include onset of neurological symptoms at 3-18 months, global developmental delay, cerebellar dysfunction (including ataxia, dysarthria, nystagmus and tremor) and spasticity. Brain MRI showed cerebellar atrophy. Mitochondrial function studies on patient fibroblasts showed significantly reduced spare respiratory capacity. CONCLUSION: We report on five new patients with NUBPL disease, adding to the number and phenotypic variability of patients diagnosed worldwide, and review prior reported patients with pathogenic NUBPL variants.


Mitochondrial Diseases/genetics , Mitochondrial Proteins/genetics , Adolescent , Brain/diagnostic imaging , Child , DNA Mutational Analysis , Female , Humans , Magnetic Resonance Imaging , Male , Mitochondrial Diseases/diagnostic imaging , Mitochondrial Diseases/physiopathology , Pedigree , RNA-Seq , Exome Sequencing , Young Adult
2.
Article En | MEDLINE | ID: mdl-32532877

Reticular dysgenesis is a form of severe combined immunodeficiency (SCID) caused by biallelic pathogenic variants in AK2 Here we present the case of a boy diagnosed with SCID following a positive newborn screen (NBS). Genetic testing revealed a homozygous variant: AK2 c.330 + 5G > A. In silico analyses predicted weakened native donor splice site. However, this variant was initially classified as a variant of uncertain significance (VUS) given lack of direct evidence. To determine the impact on splicing, we analyzed RNA from the proband and his parents, using massively parallel RNA-seq of cloned RT-PCR products. Analysis showed that c.330 + 5G > A results in exon 3 skipping, which encodes a critical region of the AK2 protein. With these results, the variant was upgraded to pathogenic, and the patient was given a diagnosis of reticular dysgenesis. Interpretation of VUS at noncanonical splice site nucleotides presents a challenge. RNA sequencing provides an ideal platform to perform qualitative and quantitative assessment of intronic VUS, which can lead to reclassification if a significant impact on mRNA is observed. Genetic disorders of hematopoiesis and immunity represent fruitful areas to apply RNA-based analysis for variant interpretation given the high expression of RNA in blood.


Adenylate Kinase/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Variation , Introns , Leukopenia/diagnosis , Leukopenia/genetics , Severe Combined Immunodeficiency/diagnosis , Severe Combined Immunodeficiency/genetics , Alleles , DNA Mutational Analysis , Exons , Humans , Infant , Infant, Newborn , Leukopenia/therapy , Male , Mutation , Peripheral Blood Stem Cell Transplantation , Phenotype , RNA Splicing , Severe Combined Immunodeficiency/therapy , Treatment Outcome
3.
NPJ Precis Oncol ; 4: 4, 2020.
Article En | MEDLINE | ID: mdl-32133419

Germline variants in tumor suppressor genes (TSGs) can result in RNA mis-splicing and predisposition to cancer. However, identification of variants that impact splicing remains a challenge, contributing to a substantial proportion of patients with suspected hereditary cancer syndromes remaining without a molecular diagnosis. To address this, we used capture RNA-sequencing (RNA-seq) to generate a splicing profile of 18 TSGs (APC, ATM, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, MLH1, MSH2, MSH6, MUTYH, NF1, PALB2, PMS2, PTEN, RAD51C, RAD51D, and TP53) in 345 whole-blood samples from healthy donors. We subsequently demonstrated that this approach can detect mis-splicing by comparing splicing profiles from the control dataset to profiles generated from whole blood of individuals previously identified with pathogenic germline splicing variants in these genes. To assess the utility of our TSG splicing profile to prospectively identify pathogenic splicing variants, we performed concurrent capture DNA and RNA-seq in a cohort of 1000 patients with suspected hereditary cancer syndromes. This approach improved the diagnostic yield in this cohort, resulting in a 9.1% relative increase in the detection of pathogenic variants, demonstrating the utility of performing simultaneous DNA and RNA genetic testing in a clinical context.

4.
Genome Med ; 12(1): 28, 2020 03 17.
Article En | MEDLINE | ID: mdl-32183904

BACKGROUND: Classifying pathogenicity of missense variants represents a major challenge in clinical practice during the diagnoses of rare and genetic heterogeneous neurodevelopmental disorders (NDDs). While orthologous gene conservation is commonly employed in variant annotation, approximately 80% of known disease-associated genes belong to gene families. The use of gene family information for disease gene discovery and variant interpretation has not yet been investigated on a genome-wide scale. We empirically evaluate whether paralog-conserved or non-conserved sites in human gene families are important in NDDs. METHODS: Gene family information was collected from Ensembl. Paralog-conserved sites were defined based on paralog sequence alignments; 10,068 NDD patients and 2078 controls were statistically evaluated for de novo variant burden in gene families. RESULTS: We demonstrate that disease-associated missense variants are enriched at paralog-conserved sites across all disease groups and inheritance models tested. We developed a gene family de novo enrichment framework that identified 43 exome-wide enriched gene families including 98 de novo variant carrying genes in NDD patients of which 28 represent novel candidate genes for NDD which are brain expressed and under evolutionary constraint. CONCLUSION: This study represents the first method to incorporate gene family information into a statistical framework to interpret variant data for NDDs and to discover new NDD-associated genes.


Developmental Disabilities/genetics , Genome-Wide Association Study/methods , Multigene Family , Mutation, Missense , Genetic Loci , Phylogeny , Sequence Homology
5.
J Med Genet ; 57(1): 62-69, 2020 Jan.
Article En | MEDLINE | ID: mdl-31391288

BACKGROUND: Pathogenic variants in mismatch repair (MMR) genes (MLH1, MSH2, MSH6 and PMS2) increase risk for Lynch syndrome and related cancers. We quantified tumour characteristics to assess variant pathogenicity for germline MMR genes. METHODS: Among 4740 patients with cancer with microsatellite instability (MSI) and immunohistochemical (IHC) results, we tested MMR pathogenic variant association with MSI/IHC status, and estimated likelihood ratios which we used to compute a tumour characteristic likelihood ratio (TCLR) for each variant. Predictive performance of TCLR in combination with in silico predictors, and a multifactorial variant prediction (MVP) model that included allele frequency, co-occurrence, co-segregation, and clinical and family history information was assessed. RESULTS: Compared with non-carriers, carriers of germline pathogenic/likely pathogenic (P/LP) variants were more likely to have abnormal MSI/IHC status (p<0.0001). Among 150 classified missense variants, 73.3% were accurately predicted with TCLR alone. Models leveraging in silico scores as prior probabilities accurately classified >76.7% variants. Adding TCLR as quantitative evidence in an MVP model (MVP +TCLR Pred) increased the proportion of accurately classified variants from 88.0% (MVP alone) to 98.0% and generated optimal performance statistics among all models tested. Importantly, MVP +TCLR Pred resulted in the high yield of predicted classifications for missense variants of unknown significance (VUS); among 193 VUS, 62.7% were predicted as P/PL or benign/likely benign (B/LB) when assessed according to American College of Medical Genetics and Genomics/Association for Molecular Pathology guidelines. CONCLUSION: Our study demonstrates that when used separately or in conjunction with other evidence, tumour characteristics provide evidence for germline MMR missense variant assessment, which may have important implications for genetic testing and clinical management.


DNA Mismatch Repair , Mutation, Missense , Neoplasms/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis , Computer Simulation , DNA-Binding Proteins/genetics , Female , Genetic Predisposition to Disease , Germ-Line Mutation , Humans , Male , Microsatellite Instability , Middle Aged , Mismatch Repair Endonuclease PMS2/genetics , MutL Protein Homolog 1/genetics , MutS Homolog 2 Protein/genetics , Neoplasms/metabolism
6.
Sci Transl Med ; 11(521)2019 12 04.
Article En | MEDLINE | ID: mdl-31801883

Hormonal therapy targeting androgen receptor (AR) is initially effective to treat prostate cancer (PCa), but it eventually fails. It has been hypothesized that cellular heterogeneity of PCa, consisting of AR+ luminal tumor cells and AR- neuroendocrine (NE) tumor cells, may contribute to therapy failure. Here, we describe the successful purification of NE cells from primary fresh human prostate adenocarcinoma based on the cell surface receptor C-X-C motif chemokine receptor 2 (CXCR2). Functional studies revealed CXCR2 to be a driver of the NE phenotype, including loss of AR expression, lineage plasticity, and resistance to hormonal therapy. CXCR2-driven NE cells were critical for the tumor microenvironment by providing a survival niche for the AR+ luminal cells. We demonstrate that the combination of CXCR2 inhibition and AR targeting is an effective treatment strategy in mouse xenograft models. Such a strategy has the potential to overcome therapy resistance caused by tumor cell heterogeneity.


Drug Resistance, Neoplasm , Molecular Targeted Therapy , Prostatic Neoplasms/drug therapy , Receptors, Interleukin-8B/antagonists & inhibitors , Animals , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Cell Membrane/metabolism , Disease Progression , Humans , Male , Mice, Nude , Neoplasm Grading , Neoplastic Stem Cells/pathology , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Neuroendocrine Tumors/blood supply , Neuroendocrine Tumors/drug therapy , Neuroendocrine Tumors/pathology , Neurosecretory Systems/pathology , Phenotype , Prostatic Neoplasms/blood supply , Prostatic Neoplasms/pathology , Receptors, Interleukin-8B/metabolism , Signal Transduction , Tumor Microenvironment
8.
J Med Genet ; 56(7): 453-460, 2019 07.
Article En | MEDLINE | ID: mdl-30890586

BACKGROUND: PALB2 monoallelic loss-of-function germ-line variants confer a breast cancer risk comparable to the average BRCA2 pathogenic variant. Recommendations for risk reduction strategies in carriers are similar. Elaborating robust criteria to identify loss-of-function variants in PALB2-without incurring overprediction-is thus of paramount clinical relevance. Towards this aim, we have performed a comprehensive characterisation of alternative splicing in PALB2, analysing its relevance for the classification of truncating and splice site variants according to the 2015 American College of Medical Genetics and Genomics-Association for Molecular Pathology guidelines. METHODS: Alternative splicing was characterised in RNAs extracted from blood, breast and fimbriae/ovary-related human specimens (n=112). RNAseq, RT-PCR/CE and CloneSeq experiments were performed by five contributing laboratories. Centralised revision/curation was performed to assure high-quality annotations. Additional splicing analyses were performed in PALB2 c.212-1G>A, c.1684+1G>A, c.2748+2T>G, c.3113+5G>A, c.3350+1G>A, c.3350+4A>C and c.3350+5G>A carriers. The impact of the findings on PVS1 status was evaluated for truncating and splice site variant. RESULTS: We identified 88 naturally occurring alternative splicing events (81 newly described), including 4 in-frame events predicted relevant to evaluate PVS1 status of splice site variants. We did not identify tissue-specific alternate gene transcripts in breast or ovarian-related samples, supporting the clinical relevance of blood-based splicing studies. CONCLUSIONS: PVS1 is not necessarily warranted for splice site variants targeting four PALB2 acceptor sites (exons 2, 5, 7 and 10). As a result, rare variants at these splice sites cannot be assumed pathogenic/likely pathogenic without further evidences. Our study puts a warning in up to five PALB2 genetic variants that are currently reported as pathogenic/likely pathogenic in ClinVar.


Alternative Splicing , Fanconi Anemia Complementation Group N Protein/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Alleles , Gene Expression Profiling , Genetic Association Studies/methods , Germ-Line Mutation , Humans , Mutation , Neoplasms/diagnosis , Neoplasms/genetics , Nonsense Mediated mRNA Decay , RNA Splice Sites
9.
JAMA Oncol ; 5(1): 51-57, 2019 01 01.
Article En | MEDLINE | ID: mdl-30128536

Importance: Since the discovery of BRCA1 and BRCA2, multiple high- and moderate-penetrance genes have been reported as risk factors for hereditary breast cancer, ovarian cancer, or both; however, it is unclear whether these findings represent the complete genetic landscape of these cancers. Systematic investigation of the genetic contributions to breast and ovarian cancers is needed to confirm these findings and explore potentially new associations. Objective: To confirm reported and identify additional predisposition genes for breast or ovarian cancer. Design, Setting, and Participants: In this sample of 11 416 patients with clinical features of breast cancer, ovarian cancer, or both who were referred for genetic testing from 1200 hospitals and clinics across the United States and of 3988 controls who were referred for genetic testing for noncancer conditions between 2014 and 2015, whole-exome sequencing was conducted and gene-phenotype associations were examined. Case-control analyses using the Genome Aggregation Database as a set of reference controls were also conducted. Main Outcomes and Measures: Breast cancer risk associated with pathogenic variants among 625 cancer predisposition genes; association of identified predisposition breast or ovarian cancer genes with the breast cancer subtypes invasive ductal, invasive lobular, hormone receptor-positive, hormone receptor-negative, and male, and with early-onset disease. Results: Of 9639 patients with breast cancer, 3960 (41.1%) were early-onset cases (≤45 years at diagnosis) and 123 (1.3%) were male, with men having an older age at diagnosis than women (mean [SD] age, 61.8 [12.8] vs 48.6 [11.4] years). Of 2051 women with ovarian cancer, 445 (21.7%) received a diagnosis at 45 years or younger. Enrichment of pathogenic variants were identified in 4 non-BRCA genes associated with breast cancer risk: ATM (odds ratio [OR], 2.97; 95% CI, 1.67-5.68), CHEK2 (OR, 2.19; 95% CI, 1.40-3.56), PALB2 (OR, 5.53; 95% CI, 2.24-17.65), and MSH6 (OR, 2.59; 95% CI, 1.35-5.44). Increased risk for ovarian cancer was associated with 4 genes: MSH6 (OR, 4.16; 95% CI, 1.95-9.47), RAD51C (OR, not estimable; false-discovery rate-corrected P = .004), TP53 (OR, 18.50; 95% CI, 2.56-808.10), and ATM (OR, 2.85; 95% CI, 1.30-6.32). Neither the MRN complex genes nor CDKN2A was associated with increased breast or ovarian cancer risk. The findings also do not support previously reported breast cancer associations with the ovarian cancer susceptibility genes BRIP1, RAD51C, and RAD51D, or mismatch repair genes MSH2 and PMS2. Conclusions and Relevance: The results of this large-scale exome sequencing of patients and controls shed light on both well-established and controversial non-BRCA predisposition gene associations with breast or ovarian cancer reported to date and may implicate additional breast or ovarian cancer susceptibility gene candidates involved in DNA repair and genomic maintenance.


Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Exome Sequencing , Ovarian Neoplasms/genetics , Adult , Aged , Breast Neoplasms/diagnosis , Breast Neoplasms, Male/genetics , Case-Control Studies , Female , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Ovarian Neoplasms/diagnosis , Phenotype , Risk Assessment , Risk Factors , United States
10.
Genet Med ; 21(7): 1603-1610, 2019 07.
Article En | MEDLINE | ID: mdl-30563988

PURPOSE: Structural variation (SV) is associated with inherited diseases. Next-generation sequencing (NGS) is an efficient method for SV detection because of its high-throughput, low cost, and base-pair resolution. However, due to lack of standard NGS protocols and a limited number of clinical samples with pathogenic SVs, comprehensive standards for SV detection, interpretation, and reporting are to be established. METHODS: We performed SV assessment on 60,000 clinical samples tested with hereditary cancer NGS panels spanning 48 genes. To evaluate NGS results, NGS and orthogonal methods were used separately in a blinded fashion for SV detection in all samples. RESULTS: A total of 1,037 SVs in coding sequence (CDS) or untranslated regions (UTRs) and 30,847 SVs in introns were detected and validated. Across all variant types, NGS shows 100% sensitivity and 99.9% specificity. Overall, 64% of CDS/UTR SVs were classified as pathogenic/likely pathogenic, and five deletions/duplications were reclassified as pathogenic using breakpoint information from NGS. CONCLUSION: The SVs presented here can be used as a valuable resource for clinical research and diagnostics. The data illustrate NGS as a powerful tool for SV detection. Application of NGS and confirmation technologies in genetic testing ensures delivering accurate and reliable results for diagnosis and patient care.


Genetic Testing , High-Throughput Nucleotide Sequencing , Neoplasms/genetics , Humans , Neoplasms/diagnosis , Pseudogenes , Sensitivity and Specificity
11.
Front Oncol ; 8: 286, 2018.
Article En | MEDLINE | ID: mdl-30101128

Clinical genetic testing for hereditary breast and ovarian cancer (HBOC) is becoming widespread. However, the interpretation of variants of unknown significance (VUS) in HBOC genes, such as the clinically actionable genes BRCA1 and BRCA2, remain a challenge. Among the variants that are frequently classified as VUS are those with unclear effects on splicing. In order to address this issue we developed a high-throughput RNA-massively parallel sequencing assay-CloneSeq-capable to perform quantitative and qualitative analysis of transcripts in cell lines and HBOC patients. This assay is based on cloning of RT-PCR products followed by massive parallel sequencing of the cloned transcripts. To validate this assay we compared it to the RNA splicing assays recommended by members of the ENIGMA (Evidence-based Network for the Interpretation of Germline Mutant Alleles) consortium. This comparison was performed using well-characterized lymphoblastoid cell lines (LCLs) generated from carriers of the BRCA1 or BRCA2 germline variants that have been previously described to be associated with splicing defects. CloneSeq was able to replicate the ENIGMA results, in addition to providing quantitative characterization of BRCA1 and BRCA2 germline splicing alterations in a high-throughput fashion. Furthermore, CloneSeq was used to analyze blood samples obtained from carriers of BRCA1 or BRCA2 germline sequence variants, including the novel uncharacterized alteration BRCA1 c.5152+5G>T, which was identified in a HBOC family. CloneSeq provided a high-resolution picture of all the transcripts induced by BRCA1 c.5152+5G>T, indicating it results in significant levels of exon skipping. This analysis proved to be important for the classification of BRCA1 c.5152+5G>T as a clinically actionable likely pathogenic variant. Reclassifications such as these are fundamental in order to offer preventive measures, targeted treatment, and pre-symptomatic screening to the correct individuals.

12.
Nat Genet ; 50(7): 1048-1053, 2018 07.
Article En | MEDLINE | ID: mdl-29942082

Epilepsy is a frequent feature of neurodevelopmental disorders (NDDs), but little is known about genetic differences between NDDs with and without epilepsy. We analyzed de novo variants (DNVs) in 6,753 parent-offspring trios ascertained to have different NDDs. In the subset of 1,942 individuals with NDDs with epilepsy, we identified 33 genes with a significant excess of DNVs, of which SNAP25 and GABRB2 had previously only limited evidence of disease association. Joint analysis of all individuals with NDDs also implicated CACNA1E as a novel disease-associated gene. Comparing NDDs with and without epilepsy, we found missense DNVs, DNVs in specific genes, age of recruitment, and severity of intellectual disability to be associated with epilepsy. We further demonstrate the extent to which our results affect current genetic testing as well as treatment, emphasizing the benefit of accurate genetic diagnosis in NDDs with epilepsy.


Epilepsy/genetics , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Neurodevelopmental Disorders/genetics , Exome/genetics , Female , Genetic Testing/methods , Humans , Intellectual Disability/genetics , Male
13.
Oncotarget ; 9(29): 20304-20322, 2018 Apr 17.
Article En | MEDLINE | ID: mdl-29755653

The current algorithm for Lynch syndrome diagnosis is highly complex with multiple steps which can result in an extended time to diagnosis while depleting precious tumor specimens. Here we describe the analytical validation of a custom probe-based NGS tumor panel, TumorNext-Lynch-MMR, which generates a comprehensive genetic profile of both germline and somatic mutations that can accelerate and streamline the time to diagnosis and preserve specimen. TumorNext-Lynch-MMR can detect single nucleotide variants, small insertions and deletions in 39 genes that are frequently mutated in Lynch syndrome and colorectal cancer. Moreover, the panel provides microsatellite instability status and detects loss of heterozygosity in the five Lynch genes; MSH2, MSH6, MLH1, PMS2 and EPCAM. Clinical cases are described that highlight the assays ability to differentiate between somatic and germline mutations, precisely classify variants and resolve discordant cases.

14.
Genet Med ; 20(9): 1099-1102, 2018 09.
Article En | MEDLINE | ID: mdl-29388939

In the published version of this paper, some of the columns in the last three rows of Table 3 were mistakenly transposed. The corrected table appears below. In col. 6 of the row for DNMT3A, "S3" was published in the original article. However, in the revised table for the corrigendum, it has been corrected to "S1". In col. 6 of the row for SON, "S3" was published in the original article. However, in the revised table for the corrigendum, it has been corrected to "S2".

15.
Genet Med ; 19(2): 224-235, 2017 02.
Article En | MEDLINE | ID: mdl-27513193

PURPOSE: Diagnostic exome sequencing (DES) is now a commonly ordered test for individuals with undiagnosed genetic disorders. In addition to providing a diagnosis for characterized diseases, exome sequencing has the capacity to uncover novel candidate genes for disease. METHODS: Family-based DES included analysis of both characterized and novel genetic etiologies. To evaluate candidate genes for disease in the clinical setting, we developed a systematic, rule-based classification schema. RESULTS: Testing identified a candidate gene among 7.7% (72/934) of patients referred for DES; 37 (4.0%) and 35 (3.7%) of the genes received evidence scores of "candidate" and "suspected candidate," respectively. A total of 71 independent candidate genes were reported among the 72 patients, and 38% (27/71) were subsequently corroborated in the peer-reviewed literature. This rate of corroboration increased to 51.9% (27/52) among patients whose gene was reported at least 12 months previously. CONCLUSIONS: Herein, we provide transparent, comprehensive, and standardized scoring criteria for the clinical reporting of candidate genes. These results demonstrate that DES is an integral tool for genetic diagnosis, especially for elucidating the molecular basis for both characterized and novel candidate genetic etiologies. Gene discoveries also advance the understanding of normal human biology and more common diseases.Genet Med 19 2, 224-235.


Exome Sequencing , Genetic Association Studies , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , Databases, Genetic , Exome/genetics , Genetic Diseases, Inborn/pathology , High-Throughput Nucleotide Sequencing/methods , Humans , Mutation
16.
Gene Regul Syst Bio ; 10: 1-8, 2016.
Article En | MEDLINE | ID: mdl-26819550

Butyrate is a nutritional element with strong epigenetic regulatory activity as a histone deacetylase inhibitor. Based on the analysis of differentially expressed genes in the bovine epithelial cells using RNA sequencing technology, a set of unique genes that are activated only after butyrate treatment were revealed. A complementary bioinformatics analysis of the functional category, pathway, and integrated network, using Ingenuity Pathways Analysis, indicated that these genes activated by butyrate treatment are related to major cellular functions, including cell morphological changes, cell cycle arrest, and apoptosis. Our results offered insight into the butyrate-induced transcriptomic changes and will accelerate our discerning of the molecular fundamentals of epigenomic regulation.

17.
Vet Parasitol ; 211(3-4): 241-50, 2015 Jul 30.
Article En | MEDLINE | ID: mdl-26025321

To elucidate the molecular mechanism of host resistance, we characterized the jejunal transcriptome of Angus cattle selected for parasite resistance for over 20 years in response to infection caused by the intestinal worm Cooperia oncophora. The transcript abundance of 56 genes, such as that of mucin 12 (MUC12) and intestinal alkaline phosphatase (ALPI), was significantly higher in resistant cattle. Novel splicing variants, exon skipping events, and gene fusion events, were also detected. An algorithm for the reconstruction of accurate cellular networks (ARACNE) was used to infer de novo regulatory molecular networks in the interactome between the parasite and host. Under a combined cutoff of an error tolerance (ϵ = 0.10) and a stringent P-value threshold of mutual information (1.0 × 10(-5)), a total of 229,100 direct interactions controlled by 20,288 hub genes were identified. Among these hub genes, 7651 genes had ≥ 100 direct neighbors while the top 9778 hub genes controlled more than 50% of total direct interactions. Three lysozyme genes (LYZ1, LYZ2, and LYZ3), which are co-located in bovine chromosome 5 in tandem and are strongly upregulated in resistant cattle, shared a common regulatory network of 55 genes. These ancient antimicrobials were likely involved in regulating host-parasite interactions by affecting host gut microbiome. Notably, ALPI, known as a gut mucosal defense factor, controlled a molecular network consisting 410 genes, including 14 transcription factors (TF) and 10 genes that were significantly regulated in resistant cattle. Several large regulatory networks were controlled by TF, such as STAT6, SREBF1, and ELF4. Gene ontology (GO) processes significantly enriched in the regulatory network controlled by STAT6 included lipid metabolism. Our findings provide insights into the immune regulation of host-parasite interactions and the molecular mechanisms of host resistance in cattle.


Cattle Diseases/parasitology , Gene Regulatory Networks/immunology , Genetic Predisposition to Disease , Intestinal Diseases, Parasitic/veterinary , Protein Isoforms/metabolism , Trichostrongyloidiasis/veterinary , Animals , Antinematodal Agents/administration & dosage , Antinematodal Agents/therapeutic use , Cattle , Cattle Diseases/genetics , Cattle Diseases/immunology , Feces/parasitology , Female , Fenbendazole/administration & dosage , Fenbendazole/therapeutic use , Gene Expression Profiling , Intestinal Diseases, Parasitic/genetics , Intestinal Diseases, Parasitic/immunology , Intestinal Diseases, Parasitic/parasitology , Intestine, Small/metabolism , Macrolides/administration & dosage , Macrolides/therapeutic use , Male , Parasite Egg Count , Protein Isoforms/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Trichostrongyloidea , Trichostrongyloidiasis/genetics , Trichostrongyloidiasis/immunology , Trichostrongyloidiasis/parasitology
18.
PLoS One ; 9(11): e110505, 2014.
Article En | MEDLINE | ID: mdl-25383623

The manufacturing processes of royal demolition explosive (RDX), or hexahydro-1,3,5-trinitro-1,3,5-triazine, have resulted in serious water contamination. As a potential carcinogen, RDX can cause a broad range of harmful effects to humans and animals. The ovine rumen is capable of rapid degradation of nitroaromatic compounds, including RDX. While ruminal RDX-degrading bacteria have been identified, the genes and pathways responsible for RDX degradation in the rumen have yet to be characterized. In this study, we characterized the metabolic potential of the ovine rumen using metagenomic approaches. Sequences homologous to at least five RDX-degrading genes cloned from environmental samples (diaA, xenA, xenB, xplA, and xplB) were present in the ovine rumen microbiome. Among them, diaA was the most abundant, likely reflective of the predominance of the genus Clostridium in the ovine rumen. At least ten genera known to harbor RDX-degrading microorganisms were detectable. Metagenomic sequences were also annotated using public databases, such as Pfam, COG, and KEGG. Five of the six Pfam protein families known to be responsible for RDX degradation in environmental samples were identified in the ovine rumen. However, increased substrate availability did not appear to enhance the proliferation of RDX-degrading bacteria and alter the microbial composition of the ovine rumen. This implies that the RDX-degrading capacity of the ovine rumen microbiome is likely regulated at the transcription level. Our results provide metagenomic insights into the RDX-degrading potential of the ovine rumen, and they will facilitate the development of novel and economic bioremediation strategies.


Metagenomics/methods , Microbiota/genetics , Rumen/microbiology , Sheep/microbiology , Triazines/metabolism , Water Pollutants, Chemical/metabolism , Animals , Base Sequence , Biodegradation, Environmental , Cloning, Molecular , Genes, Bacterial/genetics , Male , Microbiota/physiology , Molecular Sequence Annotation , Molecular Sequence Data , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
19.
Gene Regul Syst Bio ; 7: 57-70, 2013.
Article En | MEDLINE | ID: mdl-23645985

Histone modification has emerged as a very important mechanism regulating the transcriptional status of the genome. Insulin-like growth factor 2 (IGF2) is a peptide hormone controlling various cellular processes, including proliferation and apoptosis. H19 gene is closely linked to IGF2 gene, and IGF2 and H19 are reciprocally regulated imprinted genes. The epigenetic signature of H19 promoter (hypermethylation) on the paternal allele plays a vital role in allowing the expression of the paternal allele of IGF2.46 Our previous studies demonstrate that butyrate regulates the expression of IGF2 as well as genes encoding IGF Binding proteins. To obtain further understanding of histone modification and its regulatory potentials in controlling IGF2/H19 gene expression, we investigated the histone modification status of some key histones associated with the expression of IGF2/H19 genes in bovine cells using RNA-seq in combination with Chip-seq technology. A high-resolution map of the major chromatin modification at the IGF2/H19 locus induced by butyrate was constructed to illustrate the fundamental association of the chromatin modification landscape that may play a role in the activation of the IGF2 gene. High-definition epigenomic landscape mapping revealed that IGF2 and H19 have distinct chromatin modification patterns at their coding and promoter regions, such as TSSs and TTSs. Moreover, the correlation between the differentially methylated regions (DMRs) of IGF2/H19 locus and histone modification (acetylation and methylation) indicated that epigenetic signatures/markers of DNA methylation, histone methylation and histone acetylation were differentially distributed on the expressed IGF2 and silenced H19 genes. Our evidence also suggests that butyrate-induced regional changes of histone acetylation statusin the upstream regulation domain of H19 may be related to the reduced expression of H19 and strong activation of IGF2. Our results provided insights into the mechanism of butyrate-induced loss of imprinting (LOI) of IGF2 and regulation of gene expression by histone modification.

20.
Bioinformatics ; 29(1): 122-3, 2013 Jan 01.
Article En | MEDLINE | ID: mdl-23044549

SUMMARY: Numerous metagenomics projects have produced tremendous amounts of sequencing data. Aligning these sequences to reference genomes is an essential analysis in metagenomics studies. Large-scale alignment data call for intuitive and efficient visualization tool. However, current tools such as various genome browsers are highly specialized to handle intraspecies mapping results. They are not suitable for alignment data in metagenomics, which are often interspecies alignments. We have developed a web browser-based desktop application for interactively visualizing alignment data of metagenomic sequences. This viewer is easy to use on all computer systems with modern web browsers and requires no software installation. AVAILABILITY: http://weizhongli-lab.org/mgaviewer


Metagenomics/methods , Sequence Alignment/methods , Software , Computer Graphics , Genome , Humans , Internet
...