Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Adv Sci (Weinh) ; 10(5): e2203742, 2023 02.
Article En | MEDLINE | ID: mdl-36541716

Photodynamic therapy (PDT) under hypoxic conditions and drug resistance in chemotherapy are perplexing problems in anti-tumor treatment. In addition, central nervous system neoplasm-targeted nanoplatforms are urgently required. To address these issues, a new multi-functional protein hybrid nanoplatform is designed, consisting of transferrin (TFR) as the multicategory solid tumor recognizer and hemoglobin for oxygen supply (ODP-TH). This protein hybrid framework encapsulates the photosensitizer protoporphyrin IX (PpIX) and chemotherapeutic agent doxorubicin (Dox), which are attached by a glutathione-responsive disulfide bond. Mechanistically, ODP-TH crosses the blood-brain barrier (BBB) and specifically aggregated in hypoxic tumors via protein homology recognition. Oxygen and encapsulated drugs ultimately promote a therapeutic effect by down-regulating the abundance of multidrug resistance gene 1 (MDR1) and hypoxia-inducible factor-1-α (HIF-1α). The results reveal that ODP-TH achieves oxygen transport and protein homology recognition in the hypoxic tumor occupation. Indeed, compared with traditional photodynamic chemotherapy, ODP-TH achieves a more efficient tumor-inhibiting effect. This study not only overcomes the hypoxia-related inhibition in combination therapy by targeted oxygen transport but also achieves an effective treatment of multiple tumors, such as breast cancer and glioma, providing a new concept for the construction of a promising multi-functional targeted and intensive anti-tumor nanoplatform.


Carcinoma , Photochemotherapy , Female , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/therapy , Carcinoma/drug therapy , Carcinoma/therapy , Hypoxia , Oxygen/pharmacology , Oxygen/therapeutic use , Photosensitizing Agents/chemistry , Photochemotherapy/instrumentation , Photochemotherapy/methods , Nanotechnology/instrumentation , Nanotechnology/methods , Nanomedicine/instrumentation , Nanomedicine/methods
2.
Eur J Med Chem ; 225: 113746, 2021 Dec 05.
Article En | MEDLINE | ID: mdl-34388382

Theranostic prodrug was highly desirable for precise diagnosis and anti-cancer therapy to decrease side effects. However, it is difficult to conjugate chemo-drug and molecular probe for combined therapy due to the complex pharmacokinetics of different molecules. Here, a novel anticancer theranostic prodrug (BTMP-SS-PTX) had been designed and synthesized by conjugating paclitaxel (PTX) with 2-(benzo[d]thiazol-2-yl)-4-methoxyphenol (BTMP) through a disulphide (-S-S-) linkage, which was redox-sensitive to the high concentration of glutathione in tumors. Upon activation with glutathione in weakly acid media, the BTMP-SS-PTX can be dissociated to release free PTX and visible BTMP, which realized the visual tracking of free drug. The cytotoxicity study demonstrated that soluble prodrug BTMP-SS-PTX displayed more outstanding anticancer activity in HepG2, MCF-7 and HeLa cells, lower toxicity to non-cancer cells (293 T) than free drugs. Furthermore, BTMP-SS-PTX was still able to induce apoptosis of HeLa cells and significantly inhibited tumor growth in HeLa-xenograft mouse model. On the basis of these findings, BTMP-SS-PTX could play a potential role in cancer diagnosis and therapy.


Antineoplastic Agents/pharmacology , Glutathione/pharmacology , Prodrugs/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Glutathione/chemistry , HEK293 Cells , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Structure , Neoplasms, Experimental/diagnostic imaging , Neoplasms, Experimental/drug therapy , Optical Imaging , Prodrugs/chemical synthesis , Prodrugs/chemistry , Solubility , Structure-Activity Relationship , Tissue Distribution
3.
Eur J Med Chem ; 169: 168-184, 2019 May 01.
Article En | MEDLINE | ID: mdl-30877972

In this paper, 41 hybrid compounds containing diaryl-1,5-diazole and morpholine structures acting as dual COX-2/5-LOX inhibitors have been designed, synthesized and biologically evaluated. Most of them showed potent antiproliferative activities and COX-2/5-LOX inhibitory in vitro. Among them, compound A33 displayed the most potency against cancer cell lines (IC50 = 6.43-10.97 µM for F10, HeLa, A549 and MCF-7 cells), lower toxicity to non-cancer cells than celecoxib (A33: IC50 = 194.01 µM vs.celecoxib: IC50 = 97.87 µM for 293T cells), and excellent inhibitory activities on COX-2 (IC50 = 0.17 µM) and 5-LOX (IC50 = 0.68 µM). Meanwhile, the molecular modeling study was performed to position compound A33 into COX-2 and 5-LOX active sites to determine the probable binding models. Mechanistic studies demonstrated that compound A33 could block cell cycle in G2 phase and subsequently induced apoptosis of F10 cells. Furthermore, compound A33 could significantly inhibit tumor growth in F10-xenograft mouse model, and pharmacokinetic study of compound A33 indicated that it showed better stability in vivo. In general, compound A33 could be a promising candidate for cancer therapy.


Antineoplastic Agents/pharmacology , Arachidonate 5-Lipoxygenase/metabolism , Azoles/pharmacology , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2/metabolism , Lipoxygenase Inhibitors/pharmacology , Morpholines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Azoles/chemical synthesis , Azoles/chemistry , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclooxygenase 2 Inhibitors/chemical synthesis , Cyclooxygenase 2 Inhibitors/chemistry , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , HEK293 Cells , Humans , Lipoxygenase Inhibitors/chemical synthesis , Lipoxygenase Inhibitors/chemistry , Models, Molecular , Molecular Structure , Morpholines/chemistry , Structure-Activity Relationship
4.
Eur J Med Chem ; 157: 909-924, 2018 Sep 05.
Article En | MEDLINE | ID: mdl-30149323

A series of novel ferrocene-pyrazole derivatives containing nitric oxide donors as COX-2 inhibitors for cancer therapy were designed, synthesized and biologically evaluated. Among them, compound 7l displayed the most potent inhibitory against COX-2 (IC50 = 0.82 µM) and antiproliferative activities against Hela cells (IC50 = 0.34 µM) compared with Celecoxib (IC50 = 0.38 and 7.91 µM). The further mechanistic studies revealed that 7l could induce apoptosis of Hela cells by mitochondrial depolarization and the antiproliferative activities of 7l were positively correlated with the levels of intracellular NO release in Hela cells. Most notably, 7l could dramatically suppress tumor growth in Hela cells xenografted mouse model. In summary, compound 7l may be promising candidates for cancer therapy.


Antineoplastic Agents/pharmacology , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2/metabolism , Drug Design , Ferrous Compounds/pharmacology , Metallocenes/pharmacology , Neoplasms, Experimental/drug therapy , Nitric Oxide Donors/pharmacology , Pyrazoles/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Cyclooxygenase 2 Inhibitors/chemical synthesis , Cyclooxygenase 2 Inhibitors/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Ferrous Compounds/chemistry , Humans , Membrane Potential, Mitochondrial/drug effects , Metallocenes/chemistry , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Structure , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Nitric Oxide/metabolism , Nitric Oxide Donors/chemistry , Pyrazoles/chemistry , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 27(16): 3653-3660, 2017 08 15.
Article En | MEDLINE | ID: mdl-28720504

In our previous study, we designed a series of pyrazole derivatives as novel COX-2 inhibitors. In order to obtain novel dual inhibitors of COX-2 and 5-LOX, herein we designed and synthesized 20 compounds by hybridizing pyrazole with substituted coumarin who was reported to exhibit 5-LOX inhibition to select potent compounds using adequate biological trials sequentially including selective inhibition of COX-2 and 5-LOX, anti-proliferation in vitro, cells apoptosis and cell cycle. Among them, the most potent compound 11g (IC50=0.23±0.16µM for COX-2, IC50=0.87±0.07µM for 5-LOX, IC50=4.48±0.57µM against A549) showed preliminary superiority compared with the positive controls Celecoxib (IC50=0.41±0.28µM for COX-2, IC50=7.68±0.55µM against A549) and Zileuton (IC50=1.35±0.24µM for 5-LOX). Further investigation confirmed that 11g could induce human non-small cell lung cancer A549 cells apoptosis and arrest the cell cycle at G2 phase in a dose-dependent manner. Our study might contribute to COX-2, 5-LOX dual inhibitors thus exploit promising novel cancer prevention agents.


Coumarins/chemistry , Coumarins/pharmacology , Cyclooxygenase 2/metabolism , Pyrazoles/chemistry , Pyrazoles/pharmacology , A549 Cells , Apoptosis/drug effects , Arachidonate 5-Lipoxygenase/chemistry , Arachidonate 5-Lipoxygenase/metabolism , Binding Sites , Catalytic Domain , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclooxygenase 2/chemistry , Cyclooxygenase 2 Inhibitors/chemical synthesis , Cyclooxygenase 2 Inhibitors/chemistry , Cyclooxygenase 2 Inhibitors/pharmacology , Drug Screening Assays, Antitumor , Humans , Inhibitory Concentration 50 , Lipoxygenase Inhibitors/chemical synthesis , Lipoxygenase Inhibitors/chemistry , Lipoxygenase Inhibitors/pharmacology , Molecular Docking Simulation , Structure-Activity Relationship
6.
Biochem Pharmacol ; 137: 10-28, 2017 08 01.
Article En | MEDLINE | ID: mdl-28456516

Microtubules are essential for the mitotic division of cells and have become an attractive target for anti-tumour drugs due to the increased incidence of cancer and significant mitosis rate of tumour cells. In this study, a total of six indole 1-position modified 1-indolyl acetate-5-nitroimidazole derivatives were designed, synthesized, and evaluated for their ability to inhibit tubulin polymerization caused by binding to the colchicine-binding site of tubulin. Among them, compound 3 displayed the best ability to inhibit tubulin polymerization; it also exhibited better anti-proliferative activities than colchicine against a panel of human cancer cells (with IC50 values ranging from 15 to 40nM), especially HeLa cells (with IC50 values of 15nM), based on the cellular cytotoxicity assay results. Moreover, cellular mechanism studies indicated that compound 3 could induce G2/M phase arrest and apoptosis of HeLa and MCF-7 cells, which were associated with alterations in the expression of cell cycle-checkpoint related proteins (Cyclin B1, Cdc2, and P21) and a reduction in the mitochondrial membrane potential as well as alterations in the levels of apoptosis-related proteins (PARP, Caspase 9, Bcl-2, and Bax) of these cells, respectively. Importantly, in vivo studies further revealed that compound 3 could dramatically suppress HeLa cell xenograft tumour growth compared with vehicle and CA-4 phosphate (CA-4P), and no signs of toxicity were observed in these mice. Collectively, these in vitro and in vivo results indicated that compound 3 might be a promising lead compound for further development as a potential anti-cancer drug.


Antineoplastic Agents, Phytogenic/pharmacology , Nitroimidazoles/pharmacology , Stilbenes/pharmacology , Tubulin Modulators/pharmacology , A549 Cells , Animals , Antineoplastic Agents, Phytogenic/chemistry , Cell Proliferation/drug effects , Cell Proliferation/physiology , Dose-Response Relationship, Drug , Female , HEK293 Cells , HT29 Cells , HeLa Cells , Hep G2 Cells , Humans , MCF-7 Cells , Mice , Mice, Nude , Nitroimidazoles/chemistry , Protein Structure, Secondary , Random Allocation , Stilbenes/chemistry , Tubulin Modulators/chemistry , Xenograft Model Antitumor Assays/methods
...