Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(23): e2310136, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38639396

RESUMEN

Dramatic growth of lithium dendrite, structural deterioration of LiCoO2 (LCO) cathode at high voltages, and unstable electrode/electrolyte interfaces pose significant obstacles to the practical application of high-energy-density LCO||Li batteries. In this work, a novel eutectogel electrolyte is developed by confining the nonflammable eutectic electrolyte in a polymer matrix. The eutectogel electrolyte can construct a robust solid electrolyte interphase (SEI) with inorganic-rich LiF and Li3N, contributing to a uniform Li deposition. Besides, the severe interface side reactions between LCO cathode and electrolyte can be retarded with an in situ formed protective layer. Correspondingly, Li||Li symmetrical cells achieve highly reversible Li plating/stripping over 1000 h. The LCO||Li full cell can maintain 72.5% capacity after 1500 cycles with a decay rate of only 0.018% per cycle at a high charging voltage of 4.45 V. Moreover, the well-designed eutectogel electrolyte can even enable the stable operation of LCO at an extremely high cutoff voltage of 4.6 V. This work introduces a promising avenue for the advancement of eutectogel electrolytes, the nonflammable nature and well-regulated interphase significantly push forward the future application of lithium metal batteries and high-voltage utilization of LCO cathode.

2.
J Colloid Interface Sci ; 636: 518-527, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36652827

RESUMEN

The construction of carbon-encapsulated transition metal nanotube structures is a preferred method that can effectively slow down volume expansion, improve cycling stability and enhance the electrical conductivity of the reactive sites of lithium-ion batteries. In this study, nanotubes of carbon-coated NiCo-NiCo2O4 nanoparticles (NC-NCO@C) were prepared by a one-step molten salt method at high temperature using Ni and Co as catalytic centers and sodium acetate as carbon source. We used NC-NCO@C-2 nanotubes as anode materials for lithium-ion batteries(LIBs), which exhibited excellent lithium storage performance and good stability, with a specific capacity of 616.26 mAh g-1 after 1000 cycles at a high current density of 1 A g-1. In addition, NC-NCO@C-2 were used as anodes in lithium-ion full cells and LiFePO4 (LFP) was used as the cathode. The NC-NCO@C-2//LFP full-cell exhibits high capacity and good cycling stability, with a capacity of 100.7 mAh g-1 after 100 cycles and a capacity retention rate of 92%. The construction of NC, NCO, and carbon ternary complexes was found to activate and promote the reversible conversion of certain inorganic components at the solid electrolyte interfaces (SEI), which effectively reduced the volume change during cycling, increased the electrical conductivity, and improved the cycling stability of the electrode. The proposed one-step molten salt synthesis of Carbon-coated metals complexes with excellent compatibility characteristics, is expected to solve the problem of volume change in transition metals, which is encountered in LIBs applications.

3.
ACS Nano ; 16(9): 14558-14568, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36040142

RESUMEN

The development of electrolytes with high safety, high ionic conductivity, and the ability to inhibit lithium dendrites growth is crucial for the fabrication of high-energy-density lithium metal batteries. In this study, a ternary eutectic electrolyte is designed with LiTFSI (TFSI = bis(trifluoromethanesulfonyl)imide), butyrolactam (BL), and succinonitrile (SN). This electrolyte exhibits a high ion conductivity, nonflammability, and a wide electrochemical window. The competitive solvation effect among SN, BL, and Li+ reduces the viscosity and improves the stability of the eutectic electrolyte. The preferential coordination of BL toward Li+ facilitates the formation of stable solid electrolyte interphase films, leading to homogeneous and dendrite-free Li plating. As expected, the LiFePO4/Li cell with this ternary eutectic electrolyte delivers a high capacity retention of 90% after 500 cycles at 2 C and an average Coulombic efficiency of 99.8%. Moreover, Ni-rich LiNi0.8Co0.1Al0.1O2/Li and LiNi0.8Co0.1Mn0.1O2/Li cells based on the modified ternary eutectic electrolyte achieve an outstanding cycling performance. This study provides insights for understanding and designing better electrolytes for lithium metal batteries and analogous sodium/potassium metal batteries.

4.
Artículo en Inglés | MEDLINE | ID: mdl-35819868

RESUMEN

The development of graphene conductive inks with a high conductivity and dispersion stability in water poses considerable challenges. Herein, a highly conductive Ag/carbon quantum dots (CQDs)/graphene (G) composite with good dispersity and stability in water was prepared for the first time through the in situ photoreduction of AgNO3 and deposition of Ag onto graphene nanosheets obtained via CQD-assisted liquid-phase exfoliation. Ag nanoparticles with an average size of ∼1.88 nm were uniformly dispersed on graphene nanosheets. The Ag/CQDs/G composite exhibited good dispersity and stability in water for 30 days. The formation mechanism of the Ag/CQDs/G composites was also discussed. CQDs played a vital role in coordinating with Ag+ and reducing it under visible light conditions. The addition of only 1.58 wt % of Ag NPs to the CQDs/G film resulted in a significant decrease in the electrical resistivity by approximately 89.5%, reaching a value of 0.054 Ω cm for a 40 µm thick Ag/CQDs/G film. A low resistivity of 2.15 × 10-3 Ω cm for the Ag/CQDs/G film was achieved after rolling compression with a compression ratio of 78%. The Ag/CQDs/G film exhibited good conductivity and durability when bent, rolled, or twisted. Moreover, the resistivity of the film displayed a slight deviation after 5000 bending cycles, indicating its outstanding stability. This study provides an efficient strategy for preparing graphene-based conductive composites with good dispersibility and stability in water as well as novel high-performance conductive inks for application in flexible printed electronics.

5.
Nanomicro Lett ; 14(1): 44, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35020069

RESUMEN

HIGHLIGHTS: A novel amide-based nonflammable electrolyte is proposed. The formation mechanism and solvation chemistry are investigated by molecular dynamics simulations and density functional theory. An inorganic/organic-rich solid electrolyte interphase with an abundance of LiF, Li3N and Li-N-C is in situ formed, leading to spherical lithium deposition. The amide-based electrolyte can enable stable cycling performance at room temperature and 60 ℃. The formation of lithium dendrites and the safety hazards arising from flammable liquid electrolytes have seriously hindered the development of high-energy-density lithium metal batteries. Herein, an emerging amide-based electrolyte is proposed, containing LiTFSI and butyrolactam in different molar ratios. 1,1,2,2-Tetrafluoroethyl-2,2,3,3-tetrafluoropropylether and fluoroethylene carbonate are introduced into the amide-based electrolyte as counter solvent and additives. The well-designed amide-based electrolyte possesses nonflammability, high ionic conductivity, high thermal stability and electrochemical stability (> 4.7 V). Besides, an inorganic/organic-rich solid electrolyte interphase with an abundance of LiF, Li3N and Li-N-C is in situ formed, leading to spherical lithium deposition. The formation mechanism and solvation chemistry of amide-based electrolyte are further investigated by molecular dynamics simulations and density functional theory. When applied in Li metal batteries with LiFePO4 and LiMn2O4 cathode, the amide-based electrolyte can enable stable cycling performance at room temperature and 60 ℃. This study provides a new insight into the development of amide-based electrolytes for lithium metal batteries.

6.
Small ; 18(6): e2104538, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34850569

RESUMEN

Small molecule organic acids as electrode materials possess the advantages of high theoretical capacity, low cost, and good processability. However, these electrode materials suffer from poor cycling stability due to the inevitable dissolution of organic molecules in the electrolytes. Here, a eutectic mixture of lithium bis(trifluoromethanesulfonyl)imide and N-methylamine is employed as a eutectic electrolyte in Li-ion batteries with small molecule organic acids as electrodes. To enhance the cycling stability of the electrolyte, fluoroethylene carbonate is used as an additive. The electrolyte exhibits nonflammability, high ionic conductivity, and good electrochemical stability. Molecular dynamics simulations and density functional theory are performed to further investigate the solvation chemistry of the eutectic electrolyte. The well-designed eutectic electrolyte inhibits the dissolution of terephthalic acid effectively and displays superior performance with a capacity retention of ≈84% after 2000 cycles at a high current density of 1 A g-1 . It also enables stable cycling of more than 900 cycles at a high current density of 2 A g-1 at 60 °C. This study provides a strategy to enhance the cycling stability and safety of Li-ion batteries with organic electrode materials.

7.
Sci Total Environ ; 800: 149558, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34391146

RESUMEN

The unique features of bioresources such as cellulose and bio-wax include renewability, biodegradability, low cost, and abundance on Earth. Therefore, their efficient use is essential for a sustainable economy. Herein, we report a facile method for the surface modification of pretreated cotton with a bio-wax emulsion in water and Fe3O4 nanoparticles to fabricate a green, durable, magnetic, and superhydrophobic/superoleophilic absorbent for the sorption of oil and organic solvents. Magnetic superhydrophobic cotton (MSC) was successfully prepared via a simple two-step dip-coating method without using any toxic organic reagents. The as-prepared MSC was used to selectively absorb various types of oils and organic solvents up to approximately 20-50 times its own weight. Furthermore, it exhibited a stable magnetic responsivity and high reusability in oil/water separation cycles. In addition, the removal and collection of the absorbed oil/organic solvents were easily achieved with distillation and a vacuum air pump. Moreover, the as-prepared MSC was used in a heavy oil/water gravity-separation filter system and in the continuous collection of a light oil from water surfaces using a pump. The proposed concept may provide a green and sustainable strategy for fabricating superhydrophobic/superoleophilic materials for efficient sorption of oils and organic solvents.


Asunto(s)
Aceites , Agua , Interacciones Hidrofóbicas e Hidrofílicas , Fenómenos Magnéticos , Solventes
8.
Nanomicro Lett ; 11(1): 10, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-34137960

RESUMEN

A novel photocatalyst of mesoporous graphitic carbon nitride (g-C3N4) co-doped with Co and Mo (Co/Mo-MCN) has been one-pot synthesized via a simple template-free method; cobalt chloride and molybdenum disulfide were used as the Co and Mo sources, respectively. The characterization results evidently indicate that molybdenum disulfide functions as Mo sources to incorporate Mo atoms in the framework of g-C3N4 and as a catalyst for promoting the decomposition of g-C3N4, resulting in the creation of mesopores. The obtained Co/Mo-MCN exhibited a significant enhancement of the photocatalytic activity in H2 evolution (8.6 times) and Rhodamine B degradation (10.1 times) under visible light irradiation compared to pristine g-C3N4. Furthermore, density functional theory calculations were applied to further understand the photocatalytic enhancement mechanism of the optical absorption properties at the atomic level after Co- or Mo-doping. Finite-difference time-domain simulations were performed to evaluate the effect of the mesopore structures on the light absorption capability. The results revealed that both the bimetal doping and the mesoporous architectures resulted in an enhanced optical absorption; this phenomenon was considered to have played a critical role in the improvement in the photocatalytic performance of Co/Mo-MCN.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...