Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Angew Chem Int Ed Engl ; : e202405222, 2024 May 10.
Article En | MEDLINE | ID: mdl-38729920

The exploration of the complex chemical diversity of bicyclo[n.1.1]alkanes and their use as benzene bioisosteres has garnered significant attention over the past two decades. Regiodivergent syntheses of thiabicyclo[4.1.1]octanes (S-BCOs) and highly substituted bicyclo[2.1.1]hexanes (BCHs) using a Lewis acid-catalyzed formal cycloaddition of bicyclobutanes (BCBs) and 3-benzylideneindoline-2-thione derivatives have been established. The first hetero-(4+3) cycloaddition of BCBs, catalyzed by Zn(OTf)2, was achieved with a broad substrate scope under mild conditions. In contrast, the less electrophilic BCB ester undergoes a Sc(OTf)3-catalyzed [2π+2σ] reaction with 1,1,2-trisubstituted alkenes, yielding BCHs with a spirocyclic quaternary carbon center. Control experiments and preliminary theoretical calculations suggest that the diastereoselective [2π+2σ] product formation may involve a concerted cycloaddition between a zwitterionic intermediate and E-1,1,2-trisubstituted alkenes. Additionally, the hetero-(4+3) cycloaddition may involve a concerted nucleophilic ring-opening mechanism.

2.
J Am Chem Soc ; 2024 May 13.
Article En | MEDLINE | ID: mdl-38739092

For nearly 60 years, significant research efforts have been focused on developing strategies for the cycloaddition of bicyclobutanes (BCBs). However, higher-order cycloaddition and catalytic asymmetric cycloaddition of BCBs have been long-standing formidable challenges. Here, we report Pd-catalyzed ligand-controlled, tunable cycloadditions for the divergent synthesis of bridged bicyclic frameworks. The dppb ligand facilitates the formal (5+3) cycloaddition of BCBs and vinyl oxiranes, yielding valuable eight-membered ethers with bridged bicyclic scaffolds in 100% regioselectivity. The Cy-DPEphos ligand promotes selective hetero-[2σ+2σ] cycloadditions to access pharmacologically important 2-oxabicyclo[3.1.1]heptane (O-BCHeps). Furthermore, the corresponding catalytic asymmetric synthesis of O-BCHeps with 94-99% ee has been achieved using chiral (S)-DTBM-Segphos, representing the first catalytic asymmetric cross-dimerization of two strained rings. The obtained O-BCHeps are promising bioisosteres for ortho-substituted benzenes.

3.
Chem Sci ; 14(45): 13060-13066, 2023 Nov 22.
Article En | MEDLINE | ID: mdl-38023515

Although ring-opening reactions of bicyclobutanes bearing electron-withdrawing groups, typically with ß-selectivity, have evolved as a powerful platform for synthesis of cyclobutanes, their application in the synthesis of cyclobutenes remains underdeveloped. Here, a novel visible light induced α-selective radical ring-opening reaction of 1,3-disubstituted acyl bicyclobutanes with alkyl radical precursors for the synthesis of functionalized cyclobutenes is described. In particular, primary, secondary, and tertiary alkyl halides are all suitable substrates for this photocatalytic transformation, providing ready access to cyclobutenes with a single all-carbon quaternary center, or with two contiguous centers under mild reaction conditions.

4.
Chem Sci ; 14(36): 9696-9703, 2023 Sep 20.
Article En | MEDLINE | ID: mdl-37736637

Ring-opening of bicyclo[1.1.0]butanes (BCBs) is emerging as a powerful strategy for 1,3-difunctionalized cyclobutane synthesis. However, reported radical strain-release reactions are typically plagued with diastereoselectivity issues. Herein, an atom-economic protocol for the highly chemo- and diastereoselective polar strain-release ring-opening of BCBs with hydroxyarenes catalyzed by a π-acid catalyst AgBF4 has been developed. The use of readily available starting materials, low catalyst loading, high selectivity (up to >98 : 2 d.r.), a broad substrate scope, ease of scale-up, and versatile functionalizations of the cyclobutane products make this approach very attractive for the synthesis of 1,1,3-trisubstituted cyclobutanes. Moreover, control experiments and theoretical calculations were performed to illustrate the reaction mechanism and selectivity.

5.
Acta Pharmacol Sin ; 44(11): 2296-2306, 2023 Nov.
Article En | MEDLINE | ID: mdl-37316630

Current therapy for acute myeloid leukemia (AML) is largely hindered by the development of drug resistance of commonly used chemotherapy drugs, including cytarabine, daunorubicin, and idarubicin. In this study, we investigated the molecular mechanisms underlying the chemotherapy drug resistance and potential strategy to improve the efficacy of these drugs against AML. By analyzing data from ex vivo drug-response and multi-omics profiling public data for AML, we identified autophagy activation as a potential target in chemotherapy-resistant patients. In THP-1 and MV-4-11 cell lines, knockdown of autophagy-regulated genes ATG5 or MAP1LC3B significantly enhanced AML cell sensitivity to the chemotherapy drugs cytarabine, daunorubicin, and idarubicin. In silico screening, we found that chloroquine phosphate mimicked autophagy inactivation. We showed that chloroquine phosphate dose-dependently down-regulated the autophagy pathway in MV-4-11 cells. Furthermore, chloroquine phosphate exerted a synergistic antitumor effect with the chemotherapy drugs in vitro and in vivo. These results highlight autophagy activation as a drug resistance mechanism and the combination therapy of chloroquine phosphate and chemotherapy drugs can enhance anti-AML efficacy.


Idarubicin , Leukemia, Myeloid, Acute , Humans , Idarubicin/pharmacology , Idarubicin/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Daunorubicin/pharmacology , Daunorubicin/therapeutic use , Cytarabine/pharmacology , Cytarabine/therapeutic use , Autophagy , Chloroquine/pharmacology , Chloroquine/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
6.
Angew Chem Int Ed Engl ; 61(38): e202208861, 2022 Sep 19.
Article En | MEDLINE | ID: mdl-35880539

We report the development of bifunctional trifluoromethylsilyl reagents for selective trifluoromethylation. The newly developed reagent, Me2 (CH2 Cl)SiCF3 , allows highly enantioselective trifluoromethylations of ketones with broad scope. Notably, by taking advantage of the chloromethyl group, a tandem synthesis of chiral trifluoromethylated oxasilacyclopentanes is developed, paving way to α-CF3 tertiary alcohols with vicinal tertiary or quaternary stereocenters. Theoretical studies revealed the important role of nonclassical C-H⋅⋅⋅F-C interactions in stabilizing the transition state, and that the presence of the chlorine atom enhances such interactions for better enantiofacial control.

7.
Chem Sci ; 13(12): 3519-3525, 2022 Mar 24.
Article En | MEDLINE | ID: mdl-35432855

A bifunctional silyl reagent Me2(CH2[double bond, length as m-dash]CH)SiCN has been developed as a novel ethylene equivalent for the Diels-Alder (DA) reaction. The use of this reagent enables the controllable synthesis of value-added cyclohexenyl ketones or 2-acyl cyclohexancarbonitrile derivatives through a five- or six-step tandem sequence based on a Wittig/cyanosilylation/DA reaction/retro-cyanosilylation/isomerization sequence that involves a temporary silicon-tethered intramolecular DA reaction.

8.
Acta Pharmacol Sin ; 43(1): 220-228, 2022 Jan.
Article En | MEDLINE | ID: mdl-33782542

Checkpoint kinase 1 inhibitors (CHK1i) have shown impressive single-agent efficacy in treatment of certain tumors, as monotherapy or potentiators of chemotherapy in clinical trials, but the sensitive tumor types and downstream effectors to dictate the therapeutic responses to CHK1i remains unclear. In this study we first analyzed GDSC (Genomics of Drug Sensitivity in Cancer) and DepMap database and disclosed that hematologic malignancies (HMs) were relatively sensitive to CHK1i or CHK1 knockdown. This notion was confirmed by examining PY34, a new and potent in-house selective CHK1i, which exhibited potent anti-HM effect in vitro and in vivo, as single agent. We demonstrated that the downregulation of c-Myc and its signaling pathway was the common transcriptomic profiling response of sensitive HM cell lines to PY34, whereas overexpressing c-Myc could partially rescue the anticancer effect of PY34. Strikingly, we revealed the significant correlations between downregulation of c-Myc and cell sensitivity to PY34 in 17 HM cell lines and 39 patient-derived cell (PDC) samples. Thus, our results demonstrate that HMs are more sensitive to CHK1i than solid tumors, and c-Myc downregulation could represent the CHK1i efficacy in HMs.


DNA-Binding Proteins/antagonists & inhibitors , Down-Regulation/drug effects , Hematologic Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Transcription Factors/antagonists & inhibitors , Animals , Cell Proliferation/drug effects , Cells, Cultured , Checkpoint Kinase 1/antagonists & inhibitors , Checkpoint Kinase 1/deficiency , Checkpoint Kinase 1/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Hematologic Neoplasms/metabolism , Hematologic Neoplasms/pathology , Humans , Mice , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Transcription Factors/genetics , Transcription Factors/metabolism
9.
Acta Pharmacol Sin ; 42(5): 814-823, 2021 May.
Article En | MEDLINE | ID: mdl-32855532

Diffuse large B-cell lymphoma (DLBCL) is the most widespread type of non-Hodgkin lymphoma (NHL). As the most aggressive form of the DLBCL, the activated B-cell-like (ABC) subtype is often resistant to standard chemotherapies. Bruton's tyrosine kinase (BTK) inhibitor ibrutinib provides a potential therapeutic approach for the DLBCL but fails to improve the outcome in the phase III trial. In the current study, we investigated the molecular mechanisms underlying ibrutinib resistance and explored new combination therapy with ibrutinib. We generated an ibrutinib-resistant ABC-DLBCL cell line (OCI-ly10-IR) through continuous exposure to ibrutinib. Transcriptome analysis of the parental and ibrutinib-resistant cell lines revealed that the ibrutinib-resistant cells had significantly lower expression of the unfolded protein response (UPR) marker genes. Overexpression of one UPR branch-XBP1s greatly potentiated ibrutinib-induced apoptosis in both sensitive and resistant cells. The UPR inhibitor tauroursodeoxycholic acid (TUDCA) partially reduced the apoptotic rate induced by the ibrutinib in sensitive cells. The UPR activator 2-deoxy-D-glucose (2-DG) in combination with the ibrutinib triggered even greater cell growth inhibition, apoptosis, and stronger calcium (Ca2+) flux inhibition than either of the agents alone. A combination treatment of ibrutinib (15 mg·kg-1·d-1, po.) and 2-DG (500 mg/kg, po, b.i.d.) synergistically retarded tumor growth in NOD/SCID mice bearing OCI-ly10-IR xenograft. In addition, ibrutinib induced the UPR in the sensitive cell lines but not in the resistant cell lines of the DLBCL. There was also a combined synergistic effect in the primary resistant DLBCL cell lines. Overall, our results suggest that targeting the UPR could be a potential combination strategy to overcome ibrutinib resistance in the DLBCL.


Adenine/analogs & derivatives , Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm/drug effects , Lymphoma, Large B-Cell, Diffuse/drug therapy , Piperidines/therapeutic use , Unfolded Protein Response/drug effects , Adenine/therapeutic use , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Deoxyglucose/therapeutic use , Drug Resistance, Neoplasm/physiology , Drug Synergism , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/physiopathology , Mice, Inbred NOD , Mice, SCID , Unfolded Protein Response/physiology , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism , Xenograft Model Antitumor Assays
10.
Org Lett ; 22(5): 2099-2104, 2020 Mar 06.
Article En | MEDLINE | ID: mdl-32105089

We report that phosphorane can activate (salen)TiCl2 complex to achieve unprecedented excellent enantioselectivity and a broad substrate scope in the cyanation of nitroolefins. Our cyanating reagent Me2(CH2Cl)SiCN proves to be more active than TMSCN in this reaction, allowing 11 ß-aliphatic nitrolefins and 12 ß-CF3 nitroolefins (either ß-aryl or aliphatic) to work well to give the corresponding tertiary or quaternary ß-nitronitriles with high to excellent enantioselectivity.

11.
J Org Chem ; 85(22): 14342-14350, 2020 Nov 20.
Article En | MEDLINE | ID: mdl-32108474

We report carbonyl-stabilized phosphorus ylides as general and efficient catalysts for the cyanosilylation of ketones. The N,N-diethylacetamide derived phosphorane is identified as an extremely efficient catalyst for the cyanosilylation of dialkyl ketones, alkyl aryl ketones, diaryl ketones, and α,ß-unsaturated enones with catalyst loading down to 0.005 mol %, the lowest ever known for ketone cyanosilylation. Aldehydes, aldimines, and ketimines are also viable substrates. By NMR and React IR analysis, as well as electrical conductivity experiments, it is proposed that the phosphorane acts as a Lewis base in order to mediate the reaction via the desilylative nucleophilic activation of TMSCN.

12.
Molecules ; 25(1)2020 Jan 03.
Article En | MEDLINE | ID: mdl-31947824

Herein, we design and synthesize an array of benzofuro[3,2-c]quinolines starting from 3-(2-methoxyphenyl)quinolin-4(1H)ones via a sequential chlorination/demethylation, intramolecular cyclization pathway. This sequential transformation was efficient, conducted under metal-free and mild reaction conditions, and yielded corresponding benzofuro[3,2-c]quinolines in high yields. In vitro biological evaluation indicated that such type of compounds showed excellent antileukemia activity and selectivity, and therefore may offer a promising hit compound for developing antileukemia compounds.


Antineoplastic Agents , Drug Design , Leukemia , Quinolines , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Leukemia/drug therapy , Leukemia/metabolism , Leukemia/pathology , Quinolines/chemical synthesis , Quinolines/chemistry , Quinolines/pharmacology
13.
Org Biomol Chem ; 14(7): 2205-9, 2016 Feb 21.
Article En | MEDLINE | ID: mdl-26810819

We report here the first catalytic asymmetric thioacetalization of salicylaldehyde and dithiol. Chiral phosphoric acid STRIP C5 is identified as a powerful catalyst for this reaction to afford various chiral dithioacetals in high to excellent yields and enantioselectivities under mild conditions.

...