Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 300
Filtrar
1.
Perfusion ; : 2676591241237133, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39175255

RESUMEN

Background: Extracorporeal life support echniques as an Adjunct to Advanced Cardiac Life Support is usually suitable for complex heart surgery such as cardiopulmonary bypass (CPB). Cerebral perfusion is a clinically feasible neuroprotective strategy; however, the lack of a reliable small animal model.Methods: Based on the rat model of ECLS we evaluate the effects of ECLS-CP using HE staining, Nissl staining, TUNEL staining and ELISA.Result: We found that ECLS combined with the cerebral perfusion model did not cause brain injury and immune inflammation. There was no difference between the two by a left carotid artery or right carotid artery CP.Conclusion: These experimental results can provide the experimental basis for selecting blood vessels for ECLS patients and clinical CP to offers a trustworthy animal model for future exploration of applying brain perfusion strategies during ECLS-CP.

2.
Int J Biol Macromol ; 278(Pt 3): 134832, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39168219

RESUMEN

Hyperuricemia (HUA) has attained a considerable global health concern, related to the development of other metabolic syndromes. Xanthine oxidase (XO), the main enzyme that catalyzes xanthine and hypoxanthine into uric acid (UA), is a key target for drug development against HUA and gout. Available XO inhibitors are effective, but they come with side effects. Recent, research has identified new XO inhibitors from dietary sources such as flavonoids, phenolic acids, stilbenes, alkaloids, polysaccharides, and polypeptides, effectively reducing UA levels. Structural activity studies revealed that -OH groups and their substitutions on the benzene ring of flavonoids, polyphenols, and stilbenes, cyclic rings in alkaloids, and the helical structure of polysaccharides are crucial for XO inhibition. Polypeptide molecular weight, amino acid sequence, hydrophobicity, and binding mode, also play a significant role in XO inhibition. Molecular docking studies show these bioactive components prevent UA formation by interacting with XO substrates via hydrophobic, hydrogen bonds, and π-π interactions. This review explores the potential bioactive substances from dietary resources with XO inhibitory, and UA lowering potentials detailing the molecular mechanisms involved. It also discusses strategies for designing XO inhibitors and assisting pharmaceutical companies in developing safe and effective treatments for HUA and gout.

3.
Aquat Toxicol ; 275: 107063, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39191072

RESUMEN

Diazepam (DZP) is a universally detected emerging pollutant in aquatic ecosystems. Although the sex-dependent effects of DZP on fish have been properly established, the underlying mechanisms remain unclear. In this study, zebrafish of both sexes were separately exposed to DZP (8 µg/L) for 21 days, and the alteration of the behaviors, brain amino acid neurotransmitter contents, and transcriptomic profiles were investigated. Although DZP exposure showed a sedative effect on both sexes, significantly reduced cumulative duration of high mobility and willingness to encounter the opposite sex were only observed in females. However, DZP significantly enhanced the brain levels of glutamate and glutamine in males but not in females. Transcriptome analysis identified more different expression genes (DEGs) in females (322 up-regulated and 311 down-regulated) than in males (138 up-regulated genes and 38 down-regulated). The DEGs in both sexes were significantly enriched in the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway of the synaptic vesicle cycle, indicating a possible pathway for the sedative effects of DZP on zebrafish. DZP exhibited different or even opposing regulatory patterns on gene expression in the brains of females and males, providing some insights into its sex-dependent impacts on the behaviors and brain neurotransmitter contents in zebrafish. Moreover, enrichment analysis also suggested that DZP exposure may affect the oocyte maturation in female zebrafish, which highlights the need to study its reproductive and transgenerational toxicity to fish species.

4.
Fish Shellfish Immunol ; 152: 109749, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39002557

RESUMEN

Chinese seabass (Lateolabrax maculatus) stands out as one of the most sought-after and economically significant species in aquaculture within China. Diseases of L. maculatus occur frequently due to the degradation of the germplasm, the aggravation of environmental pollution of water, and the reproduction of pathogenic microorganisms, inflicting considerable economic losses on the Chinese seabass industry. The Myxovirus resistance (Mx) gene plays pivotal roles in the antiviral immune response ranging from mammals to fish. However, the function of the Mx gene in L. maculatus is still unknown. Firstly, the origin and evolutionary history of Mx proteins was elucidated in this study. Subsequently, an Mx gene from L. maculatus (designed as LmMxA gene) was identified, and its functions in combating antiviral and antibacterial threats were investigated. Remarkably, our findings suggested that while Mx group genes were present in chordates, DYN group genes were present in everything from single-celled animals to humans. Furthermore, our investigation revealed that the LmMxA mRNA level increased in the kidney, spleen and liver subsequent to Vibrio anguillarum and poly(I:C) challenged. Immunofluorescence analysis indicated that LmMxA is predominantly localization in the nucleus and the cytoplasm. Notably, the expression of MAVS, IFN1 and Mx1 increased when LmMxA was overexpression within the EPC cells. Moreover, through assessment via cytopathic effect (CPE), virus titer, and antibacterial activity, it becomes evident that LmMxA exerts a dual role in bolstering both antiviral and antibacterial immune responses. These compelling findings laid the foundation for further exploring the mechanism of LmMxA in response to innate immunity of L. maculatus.


Asunto(s)
Enfermedades de los Peces , Proteínas de Peces , Inmunidad Innata , Proteínas de Resistencia a Mixovirus , Filogenia , Animales , Proteínas de Resistencia a Mixovirus/genética , Proteínas de Resistencia a Mixovirus/metabolismo , Proteínas de Resistencia a Mixovirus/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/química , Inmunidad Innata/genética , Regulación de la Expresión Génica/inmunología , Vibriosis/inmunología , Vibriosis/veterinaria , Vibrio/fisiología , Secuencia de Aminoácidos , Alineación de Secuencia/veterinaria , Poli I-C/farmacología , Lubina/inmunología , Lubina/genética , Perfilación de la Expresión Génica/veterinaria , Evolución Molecular
5.
Environ Geochem Health ; 46(8): 271, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954040

RESUMEN

Pyrethroids are synthetic organic insecticides. Deltamethrin, as one of the pyrethroids, has high insecticidal activity against pests and parasites and is less toxic to mammals, and is widely used in cities and urban areas worldwide. After entering the natural environment, deltamethrin circulates between solid, liquid and gas phases and enters organisms through the food chain, posing significant health risks. Increasing evidence has shown that deltamethrin has varying degrees of toxicity to a variety of organisms. This review summarized worldwide studies of deltamethrin residues in different media and found that deltamethrin is widely detected in a range of environments (including soil, water, sediment, and air) and organisms. In addition, the metabolism of deltamethrin, including metabolites and enzymes, was discussed. This review shed the mechanism of toxicity of deltamethrin and its metabolites, including neurotoxicity, immunotoxicity, endocrine disruption toxicity, reproductive toxicity, hepatorenal toxicity. This review is aim to provide reference for the ecological security and human health risk assessment of deltamethrin.


Asunto(s)
Insecticidas , Nitrilos , Piretrinas , Piretrinas/toxicidad , Nitrilos/toxicidad , Insecticidas/toxicidad , Humanos , Animales , Residuos de Plaguicidas/toxicidad , Residuos de Plaguicidas/análisis , Medición de Riesgo , Contaminantes Ambientales/toxicidad
6.
Sensors (Basel) ; 24(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38894472

RESUMEN

Human trajectories can be tracked by the internal processing of a camera as an edge device. This work aims to match peoples' trajectories obtained from cameras to sensor data such as acceleration and angular velocity, obtained from wearable devices. Since human trajectory and sensor data differ in modality, the matching method is not straightforward. Furthermore, complete trajectory information is unavailable; it is difficult to determine which fragments belong to whom. To solve this problem, we newly proposed the SyncScore model to find the similarity between a unit period trajectory and the corresponding sensor data. We also propose a Likelihood Fusion algorithm that systematically updates the similarity data and integrates it over time while keeping other trajectories in mind. We confirmed that the proposed method can match human trajectories and sensor data with an accuracy, a sensitivity, and an F1 of 0.725. Our models achieved decent results on the UEA dataset.


Asunto(s)
Algoritmos , Dispositivos Electrónicos Vestibles , Humanos , Análisis de Datos
7.
Heliyon ; 10(9): e30288, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38765176

RESUMEN

To explore the function and evolutionary relationships of inducible heat shock protein 70 (Hsp70) in Daphnia magna, cDNAs of four Hsp70 family members (DmaHsp70, DmaHsp70-2, DmaHsp70-12, DmaHsp70-14) were cloned. While all DmaHsp70s possess three function domains, it is noteworthy that only DmaHsp70 ends with a "EEVD" motif. Phylogenetic analysis indicates that the Hsp70-12 lineage is distanced from the rest, and therefore it is an uncharacterized lineage of Hsp70. The differences in isoelectric point and 3-dimensional (3D) conformation of the N-terminal nucleotide binding domain (NBD) of DmaHsp70s further support the theory. DmaHsp70s exhibit varied motif distribution patterns and the logo sequences of motifs have diverse signature characteristics, indicating that different mechanisms are involved in the regulation of ATP binding and hydrolysis for the DmaHsp70s. Protein-protein network together with the predicted subcellular locations of DmaHsp70s suggest that they likely fulfill distinct roles in cells. The transcription of four DmaHsp70s were changed during the recovery stage after thermal stress or oxidative stress. But the expression pattern of them were dissimilar. Collectively, these results collectively elucidated the identification of a previously uncharacterizedHsp70 lineage in animal and extended our understanding of the Hsp70 family.

8.
Nat Commun ; 15(1): 4216, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760394

RESUMEN

Antimicrobial peptides (AMPs), ancient scavengers of bacteria, are very poorly induced in macrophages infected by Mycobacterium tuberculosis (M. tuberculosis), but the underlying mechanism remains unknown. Here, we report that L-alanine interacts with PRSS1 and unfreezes the inhibitory effect of PRSS1 on the activation of NF-κB pathway to induce the expression of AMPs, but mycobacterial alanine dehydrogenase (Ald) Rv2780 hydrolyzes L-alanine and reduces the level of L-alanine in macrophages, thereby suppressing the expression of AMPs to facilitate survival of mycobacteria. Mechanistically, PRSS1 associates with TAK1 and disruptes the formation of TAK1/TAB1 complex to inhibit TAK1-mediated activation of NF-κB pathway, but interaction of L-alanine with PRSS1, disables PRSS1-mediated impairment on TAK1/TAB1 complex formation, thereby triggering the activation of NF-κB pathway to induce expression of AMPs. Moreover, deletion of antimicrobial peptide gene ß-defensin 4 (Defb4) impairs the virulence by Rv2780 during infection in mice. Both L-alanine and the Rv2780 inhibitor, GWP-042, exhibits excellent inhibitory activity against M. tuberculosis infection in vivo. Our findings identify a previously unrecognized mechanism that M. tuberculosis uses its own alanine dehydrogenase to suppress host immunity, and provide insights relevant to the development of effective immunomodulators that target M. tuberculosis.


Asunto(s)
Alanina , Péptidos Antimicrobianos , Macrófagos , Mycobacterium tuberculosis , FN-kappa B , Tuberculosis , Mycobacterium tuberculosis/patogenicidad , Mycobacterium tuberculosis/metabolismo , Animales , Ratones , FN-kappa B/metabolismo , Humanos , Macrófagos/microbiología , Macrófagos/metabolismo , Macrófagos/inmunología , Alanina/metabolismo , Péptidos Antimicrobianos/metabolismo , Péptidos Antimicrobianos/genética , Tuberculosis/microbiología , Tuberculosis/inmunología , Alanina-Deshidrogenasa/metabolismo , Alanina-Deshidrogenasa/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Transducción de Señal , Ratones Endogámicos C57BL , Células RAW 264.7 , Femenino
9.
Environ Toxicol ; 39(9): 4397-4416, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38808594

RESUMEN

Decabrominated diphenyl ether (BDE-209) is a typical persistent organic pollutant that can cross the placental barrier, increasing the exposure risk for offspring. Norepinephrine (NE) from nerve terminals and acetylcholine (Ach) can bind to specific receptors on immune cells, inhibit the immune function of the body then cause immunotoxicity. However, whether maternal exposure to BDE-209 could lead to immunotoxicity in the offspring by acting on the sympathetic and parasympathetic nervous systems remains unclear. In view of this, the pregnancy and lactation rat BDE-209 exposure model was established and the results demonstrated that pregnancy and lactation BDE-209 exposure could induce immunotoxicity to female offspring via affecting immunopathology (hematological and biochemical parameters, organ indices, and spleen histopathological), decreasing humoral immunity (serum hemolysin, immunoglobulins, and cytokine productions), damaging cellular immunity (splenic lymphocytes and spleen cytokine productions), and restraining nonspecific immunity. Moreover, a dramatically significant correlation was observed between spleen nerve indices and immunity indices. Additionally, the mechanism revealed that maternal BDE-209 exposure caused offspring immunotoxicity through (1) activating MHC/PKCθ/NF-κB pathway; (2) promoting sympathetic nervous pathway, by upregulating the expression of ß2AR protein, which in turn elevating cAMP, following activate PKA and phosphorylate CREB, ultimately leading to immunotoxicity;(3) activating parasympathetic nerve pathway by reducing the binding with Ach and α7nAchR, upregulating the expression of JAK2 and phosphorylating STAT3, induced immunotoxicity of female offspring.


Asunto(s)
Éteres Difenilos Halogenados , Exposición Materna , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Embarazo , Éteres Difenilos Halogenados/toxicidad , Exposición Materna/efectos adversos , Efectos Tardíos de la Exposición Prenatal/inmunología , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Ratas , Bazo/efectos de los fármacos , Bazo/inmunología , Sistema Nervioso Autónomo/efectos de los fármacos , Ratas Sprague-Dawley , Contaminantes Ambientales/toxicidad , Masculino , Citocinas/metabolismo
10.
Nat Microbiol ; 9(7): 1856-1872, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38806671

RESUMEN

Adaptation to hypoxia is a major challenge for the survival of Mycobacterium tuberculosis (Mtb) in vivo. Interferon (IFN)-γ-producing CD8+ T cells contribute to control of Mtb infection, in part by promoting antimicrobial activities of macrophages. Whether Mtb counters these responses, particularly during hypoxic conditions, remains unknown. Using metabolomic, proteomic and genetic approaches, here we show that Mtb induced Rv0884c (SerC), an Mtb phosphoserine aminotransferase, to produce D-serine. This activity increased Mtb pathogenesis in mice but did not directly affect intramacrophage Mtb survival. Instead, D-serine inhibited IFN-γ production by CD8+ T cells, which indirectly reduced the ability of macrophages to restrict Mtb upon co-culture. Mechanistically, D-serine interacted with WDR24 and inhibited mTORC1 activation in CD8+ T cells. This decreased T-bet expression and reduced IFN-γ production by CD8+ T cells. Our findings suggest an Mtb evasion mechanism where pathogen metabolic adaptation to hypoxia leads to amino acid-dependent suppression of adaptive anti-TB immunity.


Asunto(s)
Linfocitos T CD8-positivos , Interferón gamma , Macrófagos , Mycobacterium tuberculosis , Serina , Tuberculosis , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Mycobacterium tuberculosis/inmunología , Ratones , Serina/metabolismo , Interferón gamma/metabolismo , Interferón gamma/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Tuberculosis/inmunología , Tuberculosis/microbiología , Ratones Endogámicos C57BL , Transaminasas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Hipoxia/inmunología , Hipoxia/metabolismo , Femenino , Interacciones Huésped-Patógeno/inmunología
11.
Perfusion ; : 2676591241245876, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587932

RESUMEN

PURPOSE: Exercise-based cardiac rehabilitation (EBCR) improves functional capacity in heart failure (HF). However, data on the effect of EBCR in patients with advanced HF and left ventricular assist devices (LVADs) are limited. This meta-analysis aimed to evaluate the impact of EBCR on the functional ability of LVAD patients by comparing the corresponding outcome indicators between the EBCR and ST groups. METHODS: PubMed, Embase, Clinical Trials, and Cochrane Library databases were searched for studies assessing and comparing the effects of EBCR and standard therapy (ST) in patients following LVAD implantation. Using pre-defined criteria, appropriate studies were identified and selected. Data from selected studies were extracted in a standardized fashion, and a meta-analysis was performed using a fixed-effects model. The protocol was registered on INPLASY (202340073). RESULTS: In total, 12 trials involving 477 patients were identified. The mean age of the participants was 52.9 years, and 78.6% were male. The initiation of EBCR varied from LVAD implantation during the index hospitalization to 11 months post-LVAD implantation. The median rehabilitation period ranged from 2 weeks to 18 months. EBCR was associated with improved peak oxygen uptake (VO2) in all trials. Quantitative analysis was performed in six randomized studies involving 214 patients (EBCR: n = 130, ST: n = 84). EBCR was associated with a significantly high peak VO2 (weighted mean difference [WMD] = 1.64 mL/kg/min; 95% confidence interval [CI], 0.20-3.08; p = .03). Similarly, 6-min walk distance (6MWD) showed significantly greater improvement in the EBCR group than in the ST group (WMD = 34.54 m; 95% CI, 12.47-56.42; p = .002) in 266 patients (EBCR, n = 140; ST, n = 126). Heterogeneity was low among the included trials. None of the included studies reported serious adverse events related to EBCR, indicating the safety of EBCR after LVAD implantation. CONCLUSION: This study demonstrated that EBCR following LVAD implantation is associated with greater improvement in functional capacity compared with ST as reflected by the improved peak VO2 and 6MWD values. Considering the small number of patients in this analysis, further research on the clinical impact of EBCR in LVAD patients is warranted.

12.
Artículo en Inglés | MEDLINE | ID: mdl-38584527

RESUMEN

OBJECTIVE: At present, no proven effective treatment is available for Lung Ischemiareperfusion Injury (LIRI). Natural compounds offer promising prospects for developing new drugs to address various diseases. This study sought to explore the potential of Rebaudioside B (Reb B) as a treatment compound for LIRI, both in vivo and in vitro. METHODS: This study involved utilizing the human pulmonary alveolar cell line A549, consisting of epithelial type II cells, subjected to Oxygen-glucose Deprivation/recovery (OGD/R) for highthroughput in vitro cell viability screening. The aim was to identify the most promising candidate compounds. Additionally, an in vivo rat model of lung ischemia-reperfusion was employed to evaluate the potential protective effects of Reb B. RESULTS: Through high-throughput screening, Reb B emerged as the most promising natural compound among those tested. In the A549 OGD/R models, Reb B exhibited a capacity to enhance cell viability by mitigating apoptosis. In the in vivo LIRI model, pre-treatment with Reb B notably decreased apoptotic cells, perivascular edema, and neutrophil infiltration within lung tissues. Furthermore, Reb B demonstrated its ability to attenuate lung inflammation associated with LIRI primarily by elevating IL-10 levels while reducing levels of IL-6, IL-8, and TNF-α. CONCLUSION: The comprehensive outcomes strongly suggest Reb B's potential as a protective agent against LIRI. This effect is attributed to its inhibition of the mitochondrial apoptotic pathway and its ability to mitigate the inflammatory response.

13.
Sci Total Environ ; 927: 172308, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38599396

RESUMEN

Despite the diverse research into the environmental impact of plastics, several stones have yet to be unraveled in terms of their ecotoxicological potential. Moreover, their detrimental impacts have become terrifying in recent years as the understanding of their tendency to associate and form cohorts with other emerging contaminants grew. Despite the hypothesis that microplastics may potentially adsorb organic pollutants, sequestering and making them not bioavailable for enhanced toxicity, evidence with pollutants such as Tetrabromobisphenol A (TBBPA) defers this assertion. TBBPA, one of the most widely used brominated flame retardants, has been enlisted as an emerging contaminant of serious environmental and human health concerns. Being also an additive to plasticware, it is not far to suspect that TBBPA could be found in association with micro/nanoplastics in our environment. Several pieces of evidence from recent studies have confirmed the micro/nanoplastics-TBBPA association and have exposed their compounded detrimental impacts on the environment and human health. This study, therefore, presents a comprehensive and up-to-date review of recent findings regarding their occurrence, factors that foster their association, including their sorption kinetics and isotherms, and their impacts on aquatic/agroecosystem and human health. The way forward and prospects for future studies were presented. This research is believed to be of significant interest to the readership due to its relevance to current environmental challenges posed by plastics and TBBPA. The study not only contributes valuable insights into the specific interaction between micro/nanoplastics and TBBPA but also suggests the way forward and prospects for future studies in this field.


Asunto(s)
Ecotoxicología , Contaminantes Ambientales , Microplásticos , Bifenilos Polibrominados , Humanos , Monitoreo del Ambiente , Retardadores de Llama
14.
Chem Res Toxicol ; 37(5): 731-743, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38634348

RESUMEN

Acrylamide (ACR) is a common industrial contaminant with endocrine-disrupting toxicity. Numerous studies have indicated that females and diabetics are more sensitive to environmental contaminants. However, it remains unknown whether female diabetics are susceptible to ACR-induced toxicity and its potential mechanisms. Thus, the female ACR-exposure diabetic Balb/c mice model was established to address these issues. Results showed that ACR could induce liver injury in normal mice and cause more serious inflammatory cell infiltration, hepatocyte volume increase, and fusion in diabetic mice liver. Meanwhile, ACR could lead to exacerbation of diabetic symptoms in diabetic mice by disturbing the glucose and lipid metabolism in the liver, which mainly manifests as the accumulation of liver glycogen and liver lipids, the reduction of the activity/content of glycolytic and metabolizing enzyme as well as pentose phosphatase, upregulation of the gene expression in fatty acid transporter and gluconeogenesis, and downregulation of the gene expression in fatty acid synthesis and metabolism. Moreover, ACR exposure could induce oxidative stress, inflammation, and endoplasmic reticulum stress in the liver by a decrease in hepatic antioxidant enzyme activity and antioxidant content, an increase in inflammatory factor levels, and a change in the related protein expression of endoplasmic reticulum stress (ERS) and apoptosis-related pathways in diabetic mice. Statistical analysis results revealed that ACR-induced liver injury was highly correlated with inflammation and oxidative stress, and ERS and diabetic mice had a higher risk of liver injury than normal mice. Overall results suggested that female diabetic mice easily suffer from ACR-induced toxicity, and the reason was that ACR could induce further damage to the liver by worsening the condition of inflammation, oxidative stress, and ERS in the liver.


Asunto(s)
Acrilamida , Diabetes Mellitus Experimental , Estrés del Retículo Endoplásmico , Ratones Endogámicos BALB C , Animales , Femenino , Acrilamida/toxicidad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ratones , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/patología , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Estrés Oxidativo/efectos de los fármacos
15.
Cell ; 187(11): 2703-2716.e23, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38657602

RESUMEN

Antigen presentation defects in tumors are prevalent mechanisms of adaptive immune evasion and resistance to cancer immunotherapy, whereas how tumors evade innate immunity is less clear. Using CRISPR screens, we discovered that IGSF8 expressed on tumors suppresses NK cell function by interacting with human KIR3DL2 and mouse Klra9 receptors on NK cells. IGSF8 is normally expressed in neuronal tissues and is not required for cell survival in vitro or in vivo. It is overexpressed and associated with low antigen presentation, low immune infiltration, and worse clinical outcomes in many tumors. An antibody that blocks IGSF8-NK receptor interaction enhances NK cell killing of malignant cells in vitro and upregulates antigen presentation, NK cell-mediated cytotoxicity, and T cell signaling in vivo. In syngeneic tumor models, anti-IGSF8 alone, or in combination with anti-PD1, inhibits tumor growth. Our results indicate that IGSF8 is an innate immune checkpoint that could be exploited as a therapeutic target.


Asunto(s)
Inmunidad Innata , Inmunoterapia , Células Asesinas Naturales , Neoplasias , Animales , Femenino , Humanos , Ratones , Presentación de Antígeno , Línea Celular Tumoral , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Neoplasias/inmunología , Neoplasias/terapia
16.
Chemosphere ; 353: 141378, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38442777

RESUMEN

Tetrabromobisphenol A bis (2- hydroxyethyl) ether (TBBPA-DHEE), as one of the main derivatives of Tetrabromobisphenol A, been attracted attention for its health risks. In this study, the neurotoxicity, mechanism, and susceptivity of TBBPA-DHEE exposure to sexually developing male rats were systematically studied. Neurobehavioral research showed that TBBPA-DHEE exposure could significantly affect the behavior, learning,and memory abilities of male-developing rats, and aggravate their depression. TBBPA-DHEE exposure could inhibit the secretion of neurotransmitters. Transcriptomics studies show that TBBPA-DHEE can significantly affect gene expression, and a total of 334 differentially expressed genes are enriched. GO function enrichment analysis shows that TBBPA-DHEE exposure can significantly affect the expression of genes related to synapses and cell components. KEGG function enrichment analysis shows that TBBPA-DHEE exposure can significantly affect the expression of signal pathways related to nerves, nerve development, and signal transduction. Susceptibility analysis showed that female rats were more susceptible to TBBPA-DHEE exposure than male rats. Therefore, TBBPA-DHEE exposure has neurodevelopmental toxicity to male developmental rats, and female developmental rats are more susceptible than male developmental rats. Its possible molecular mechanism is that TBBPA-DHEE may inhibit the secretion of neurotransmitters and affect signal pathways related to neurodevelopment and signal transduction.


Asunto(s)
Retardadores de Llama , Bifenilos Polibrominados , Femenino , Masculino , Ratas , Animales , Éter , Ratas Sprague-Dawley , Éteres , Bifenilos Polibrominados/toxicidad , Bifenilos Polibrominados/análisis , Éteres de Etila , Neurotransmisores , Retardadores de Llama/toxicidad , Retardadores de Llama/análisis
17.
Cell Stress Chaperones ; 29(2): 285-299, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428516

RESUMEN

Females of the extremophile crustacean, Artemia franciscana, either release motile nauplii via the ovoviviparous pathway or encysted embryos (cysts) via the oviparous pathway. Cysts contain an abundant amount of the ATP-independent small heat shock protein that contributes to stress tolerance and embryo development, however, little is known of the role of ATP-dependent molecular chaperone, heat shock protein 90 (Hsp90) in the two processes. In this study, a hsp90 was cloned from A. franciscana. Characteristic domains of ArHsp90 were simulated from the deduced amino acid sequence, and 3D structures of ArHsp90 and Hsp90s of organisms from different groups were aligned. RNA interference was then employed to characterize ArHsp90 in A. franciscana nauplii and cysts. The partial knockdown of ArHsp90 slowed the development of nauplius-destined, but not cyst-destined embryos. ArHsp90 knockdown also reduced the survival and stress tolerance of nauplii newly released from A. franciscana females. Although the reduction of ArHsp90 had no effect on the development of diapause-destined embryos, the resulting cysts displayed reduced tolerance to desiccation and low temperature, two stresses normally encountered by A. franciscana in its natural environment. The results reveal that Hsp90 contributes to the development, growth, and stress tolerance of A. franciscana, an organism of practical importance as a feed source in aquaculture.


Asunto(s)
Artemia , Quistes , Animales , Femenino , Artemia/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Desarrollo Embrionario , Embrión no Mamífero/metabolismo , Quistes/metabolismo , Adenosina Trifosfato/metabolismo
18.
Biol Trace Elem Res ; 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374329

RESUMEN

Protocatechuic acid (PCA), a class of water-soluble phenolic acid abundant in the human diet, has been shown to be of great nutritional interest and to have medicinal value. However, the protective effects against lead (Pb)-induced body injury have not been elucidated. In this study, we explored the protective effect of PCA on Pb-induced oxidative damage and cognitive impairment in rats. The results showed that PCA could reduce the Pb content in rat bodies (blood, bone, brain, liver, and kidney) after Pb exposure. Moreover, PCA may inhibit Pb-induced oxidative damage by increasing the activity of antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and decreasing the level of malondialdehyde (MDA) in the brain, liver, and kidney. In addition, PCA may alleviate Pb-induced learning and memory impairment by upregulating neurotransmitter levels; maintaining the normal function of N-methyl-D-aspartate receptors (NMDARs); and promoting Ca2+ influx, thus activating signaling molecules, related protein kinases, and transcription factors in the cAMP-PKA-CREB pathway. In general, PCA could reduce oxidative stress and ameliorate the learning and memory deficits in Pb-treated rats, indicating that PCA may be an effective preventive agent and treatment or plumbism.

19.
Gen Comp Endocrinol ; 350: 114469, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38360373

RESUMEN

Tetrabromobisphenol A bis(2-hydroxyethyl) ether (TBBPA-DHEE) is the major TBBPA derivative. It has been detected in different environmental samples. Previous studies show that TBBPA-DHEE caused neurotoxicity in rats. In this study, juvenile zebrafish were exposed to various concentrations of TBBPA-DHEE to ascertain the potential neurotoxicity of TBBPA-DHEE, the chemical, and its possible molecular mechanism of action. Behavioral analysis revealed that TBBPA-DHEE could significantly increase the swimming distance and speed in the 1.5 mg/L group compared to the control. In contrast, the swimming distance and speed were significantly reduced in the 0.05 and 0.3 mg/L groups, affecting learning, memory, and neurodevelopment. Similarly, TBBPA-DHEE exposure caused a concentration-dependent significant increase in the levels of excitatory neurotransmitters, namely, dopamine, norepinephrine, and epinephrine, which could be attributed to the change observed in zebrafish behavior. This demonstrates the neurotoxicity of TBBPA-DHEE on juvenile zebrafish. The concentration-dependent increase in the IBR value revealed by the IBR index reveals the noticeable neurotoxic effect of TBBPA-DHEE. Transcriptomic analysis shows that TBBPA-DHEE exposure activated the PPAR signaling pathways, resulting in a disturbance of fatty acid (FA) metabolism and changes in the transcript levels of genes involved in these pathways, which could lead to lipotoxicity and hepatotoxicity. Our findings demonstrate a distinct endocrine-disrupting response to TBBPA-DHEE exposure, possibly contributing to abnormal behavioral alterations. This study provides novel insights into underlying the mechanisms and effects of TBBPA-DHEE on aquatic organisms, which may be helpful forenvironmental/human health risk assessments of the emerging pollutant.


Asunto(s)
Retardadores de Llama , Pez Cebra , Humanos , Ratas , Animales , Pez Cebra/metabolismo , Éteres/análisis , Éteres/metabolismo , Análisis de Secuencia de ARN , Retardadores de Llama/toxicidad , Retardadores de Llama/análisis , Retardadores de Llama/metabolismo
20.
J Appl Clin Med Phys ; 25(6): e14277, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38243604

RESUMEN

PURPOSE: This study aimed to improve the safety and accuracy of radiotherapy by establishing tolerance (TL) and action (AL) limits for the gamma index in patient-specific quality assurance (PSQA) for intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) using SunCHECK software, as per AAPM TG-218 report recommendations. METHODS: The study included 125 patients divided into six groups by treatment regions (H&N, thoracic and pelvic) and techniques (VMAT, IMRT). SunCHECK was used to calculate the gamma passing rate (%GP) and dose error (%DE) for each patient, for the planning target volume and organs at risk (OARs). The TL and AL were then determined for each group according to TG-218 recommendations. We conducted a comprehensive analysis to compare %DE among different groups and examined the relationship between %GP and %DE. RESULTS: The TL and AL of all groups were more stringent than the common standard as defined by the TG218 report. The TL and AL values of the groups differed significantly, and the values for the thoracic groups were lower for both VMAT and IMRT. The %DE of the parameters D95%, D90%, and Dmean in the planning target volume, and Dmean and Dmax in OARs were significantly different. The dose deviation of VMAT was larger than IMRT, especially in the thoracic group. A %GP and %DE correlation analysis showed a strong correlation for the planning target volume, but a weak correlation for the OARs. Additionally, a significant correlation existed between %GP of SunCHECK and Delta4. CONCLUSION: The study established TL and AL values tailored to various anatomical regions and treatment techniques at our institution. Establishing PSQA workflows for VMAT and IMRT offers valuable clinical insights and guidance. We also suggest developing a standard combining clinically relevant metrics with %GP to evaluate PSQA results comprehensively.


Asunto(s)
Órganos en Riesgo , Garantía de la Calidad de Atención de Salud , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Humanos , Radioterapia de Intensidad Modulada/métodos , Radioterapia de Intensidad Modulada/normas , Planificación de la Radioterapia Asistida por Computador/métodos , Planificación de la Radioterapia Asistida por Computador/normas , Garantía de la Calidad de Atención de Salud/normas , Órganos en Riesgo/efectos de la radiación , Programas Informáticos , Rayos gamma , Neoplasias/radioterapia , Guías de Práctica Clínica como Asunto/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA